Search results

Search for "HRTEM" in Full Text gives 216 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • distribution of (a) HYPS and (b) 30 wt% CuFe2O4/HYPS. FTIR spectra of HYPS and 30 wt % CuFe2O4/HYPS. Transmission electron microscopy of (a, b) 30 wt % CuFe2O4/HYPS at different scale magnifications and (c, d) high-resolution TEM (HRTEM) images of CuFe2O4/HYPS. Vibrating sample magnetometer spectrum of 30 wt
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • . Figure 1f also shows that Ni1−xCoxS2 is composed of nano-sized ultrathin crystal grown side by side. Lattice fringe spacings of around 0.28 and 0.19 nm, which can be indexed to the (002) and (113) planes of nickel–cobalt sulfide, respectively, were measured by using high-resolution TEM (HRTEM, Figure 1g
  • ; (b) FESEM images and (c) enlarged FESEM images of Ni1−xCoxS2 nanoparticles; (d–g) TEM, HRTEM and SAED pattern (inset) of the Ni1−xCoxS2 nanoflakes; (i–m) EDS elements maps of S, Ni, Co, O and C from the image (h). (a) EDS pattern of Ni1−xCoxS2 and high-resolution XPS spectra of (b) Ni 2p, (c) Co 2p
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • the variation of c/a with RS/Ti will be discussed in detail in section below along with the XPS results. Figure 2 shows the TEM and HRTEM images of the 1-S0 (a, d), 2-S0 (b, e), and 2-S2 (c, f) samples. Obviously, the undoped 1-S0 sample synthesized at 180 °C is composed of square sheet-like particles
  • , which is the typical morphology of (001)-TiO2 [8][27][28]. The HRTEM image (Figure 2d) of the particle side shows a lattice fringe spacing of 0.238 nm. This corresponds to the (004) crystal face of TiO2 and indicates that the top and bottom square surfaces (indicated by the arrow) are the (001) faces
  • [29]. For the samples synthesized at 250 °C, the TEM images (Figure 2b and Figure 2c) of the undoped 2-S0 and S-doped 2-S2 show that the edges and corners of some of the square particles become blurred. The HRTEM images (Figure 2e and Figure 2f) of the particles also exhibit lattice fringes associated
PDF
Album
Full Research Paper
Published 01 Nov 2019

Optimization and performance of nitrogen-doped carbon dots as a color conversion layer for white-LED applications

  • Tugrul Guner,
  • Hurriyet Yuce,
  • Didem Tascioglu,
  • Eren Simsek,
  • Umut Savaci,
  • Aziz Genc,
  • Servet Turan and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 2004–2013, doi:10.3762/bjnano.10.197

Graphical Abstract
  • :Eu2+, was purchased from Zhuhai Hanbo (HB-640, Guangdong, China). High-resolution transmission electron microscopy (HRTEM; JEOL 2100F, operated at 200 kV) was employed to examine the morphology of the N-CDots. X-ray photoelectron spectroscopy (XPS) studies were performed using a Thermo Scientific K
  • Figure 2 shows HRTEM micrographs of several individual nanoparticles identified as carbon quantum dots (CDots). We further diluted the stock solution for the HRTEM analysis in order to obtain the crystal structure of individual CDots avoiding possible agglomerations. As a consequence, the prepared TEM
  • nanoparticles instead of power spectra, which show diffraction spots generated by only one plane. Figure 2c shows the HRTEM micrograph of a ≈10 nm diameter nanoparticle. This nanoparticle is identified as being composed of a graphite phase based on the observation of the 0.34 nm lattice spacing values
PDF
Album
Supp Info
Full Research Paper
Published 15 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • within the coherent X-ray scattering region, and the size can be slightly different from the values obtained by transmission electron microscopy (TEM). The TEM images of the nanoparticles are presented in Figure 2. The particle size distribution estimated from the high-resolution TEM (HRTEM) images is
  • ) indicates that the iron oxide nanoparticles adopted a diamond-type cubic crystal lattice structure (space group ) that is typical for magnetite (Fe3O4) [15] and/or disordered maghemite (γ-Fe2O3) [16]. The HRTEM images of several selected particles in both samples were analyzed by direct measurements of the
  • selected in Figure 2 are very similar (a = 0.84 nm), and hence magnetite (Fe3O4) and disordered maghemite γ-Fe2O3 compounds cannot be resolved by HRTEM in such images. The Raman spectrum of the uncoated nanoparticles is shown in Figure 4, and the fitting of the peaks in the frequency region up to 950 cm−1
PDF
Album
Full Research Paper
Published 02 Oct 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • consequential interface characteristics and its effect on the photocurrent spectra. Keywords: grazing incidence XRD (GIXRD); high-power impulse magnetron sputtering (HiPIMS); HRTEM; magnetron sputtering; photocurrent spectra; SiGe nanocrystals in SiO2/SiGe/SiO2 multilayers; STEM-HAADF; TEM; Introduction
  • incidence X-ray diffraction (GIXRD) and high-resolution transmission electron microscopy (HRTEM). Strain relaxation and its effect on the formation of NCs and the resulting interface integrity was studied and compared with structures having a thicker (ca. 200 nm) SiGe layer [23], deposited by radio
  • pattern taken on annealed MLs (600 °C, 1 min). (a) XTEM image of MLs annealed at 600 °C (1 min) showing columnar morphology of SiGe NCs in the film. The crystallites have a periodicity of ≈12.5 nm. (b) STEM-HAADF image. (c) HRTEM image with SiGe NCs separated by amorphous regions (with SiGeO). (a) TEM low
PDF
Album
Full Research Paper
Published 17 Sep 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • as NiGa @[BMIm][NTf2] (compare Table 1 and Table 3, Supporting Information File 1, Table S3). TOF values are slightly increased for precipitated, IL-free NiGa nanoparticles. To determine whether the precipitated NiGa nanoparticles used in the catalytic reaction change over time HRTEM images are
  • to NiGa nanoparticles. To complete this investigation, GaCp* was successfully decomposed in [BMIm][NTf2] to Ga2O3-doped Ga particles with a size of 350 ± 100 nm. The formation of core–shell sparticles can be ruled out by HRTEM/STEM-EDX-measurements. Phase-pure NiGa nanoparticles were tested in the
  • /MS and NMR. Conversion and selectivity were determined by GC/MS [retention times in min: 1.67 (octane), 1.75 ((Z)-4-octene), 1.78 ((E)-4-octene), 1.86 ((Z)-3-octene), 1.94 ((E)-3-octene), 2.29 (4-octyne), Shimadzu GC2014, column Ultra2, crosslinked 5% PhMe silicone, 25 m × 0.2 mm × 11 mm]. Top: HRTEM
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98

  • Simon Krause,
  • Volodymyr Bon,
  • Hongchu Du,
  • Rafal E. Dunin-Borkowski,
  • Ulrich Stoeck,
  • Irena Senkovska and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2019, 10, 1737–1744, doi:10.3762/bjnano.10.169

Graphical Abstract
  • the anisotropy of the crystals and the large peak broadening, leading to an overlap of the reflections of the two phases. To further analyze the nature of the phase mixture, we performed high-resolution transmission electron microscopy (HRTEM) analysis on DUT-98(4). HRTEM was previously applied for
  • (Supporting Information File 1, Figure S9). Interestingly, DUT-98(Hf) showed enhanced stability towards the electron beam allowing for detailed microscopic analysis of the nanocrystals and their structure. HRTEM analysis shows uniform pore channels along the rod-shaped nanocrystals with a spacing of the Hf
  • Information File 1, Figure S10) compared to DUT-98(3), which further supports the observations made by PXRD and HRTEM. In fact, neither of the isotherms of DUT-98(Hf) nor DUT-98(2)–(4) show any indication of adsorption-induced flexible behavior, evident by steps or hysteresis in the isotherm. Thus, nitrogen
PDF
Album
Supp Info
Full Research Paper
Published 20 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • nanoporous TiO2 has been completely wrapped by wrinkled GO nanosheets (Figure 3d and 3e). As displayed in the high-resolution TEM (HRTEM) images (Figure 3f and 3g), the TiO2/GO composite reveals no clear lattice fringe for TiO2, indicating poor crystallinity. It is clear that the GO sheets have a flake-like
  • of the TiO2/GO composite. (a) SEM image, (b) element maps and (c) TEM image of the as-prepared nanoporous TiO2 particles. (d) SEM image, (e) TEM image, (f, g) HRTEM images and (h–k) EDS mapping of the as-prepared TiO2/GO composite. Surface SEM images of (a) a pristine separator, (b) a TiO2/GO-coated
PDF
Album
Full Research Paper
Published 19 Aug 2019

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • of high-resolution TEM (HRTEM) imaging and electron diffraction experiments was performed to investigate the electron-induced defects in the Bi2WO6 nanoflakes. Our results reveal that Bi2WO6 nanoflakes can be decomposed into Bi precipitates and WO3 nanosheets after the generation of oxygen vacancies
  • during the electron-beam irradiation process. The formation mechanisms of Bi/O defects are discussed in detail by combining the HRTEM imaging of defects and the calculation of the electrostatic site potentials of Bi2WO6. Results and Discussion Structural features and photodegradation The Bi2WO6 sample is
  • that the Al peak located at 1.5 keV is from the sample holder. Figure 1b shows a low-magnification TEM image of the specimen, illustrating that these aggregates are composed of crystalline nanoflakes with sizes of 50–100 nm. The thickness of these nanoflakes is 6–14 nm, as determined by HRTEM
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

Selective gas detection using Mn3O4/WO3 composites as a sensing layer

  • Yongjiao Sun,
  • Zhichao Yu,
  • Wenda Wang,
  • Pengwei Li,
  • Gang Li,
  • Wendong Zhang,
  • Lin Chen,
  • Serge Zhuivkov and
  • Jie Hu

Beilstein J. Nanotechnol. 2019, 10, 1423–1433, doi:10.3762/bjnano.10.140

Graphical Abstract
  • of pure WO3 and Mn3O4/WO3 composites, and (b) the magnified region of the (402) peaks. SEM images of (a) WO3, (b) 1 atom %, (c) 3 atom % and (d) 5 atom % Mn3O4/WO3 composites. (a) TEM image and (b,c) HRTEM image of 5 atom % Mn3O4/WO3 composites. N2 adsorption–desorption isotherms of pure WO3 and
PDF
Album
Supp Info
Full Research Paper
Published 17 Jul 2019

Construction of a 0D/1D composite based on Au nanoparticles/CuBi2O4 microrods for efficient visible-light-driven photocatalytic activity

  • Weilong Shi,
  • Mingyang Li,
  • Hongji Ren,
  • Feng Guo,
  • Xiliu Huang,
  • Yu Shi and
  • Yubin Tang

Beilstein J. Nanotechnol. 2019, 10, 1360–1367, doi:10.3762/bjnano.10.134

Graphical Abstract
  • ) of Au/CBO also confirm this result. Also, TEM and HRTEM images were recorded. As shown in Figure 4a, Au NPs with a size of 20–30 nm were found to be uniformly dispersed on the surface of the CBO microrods. The HRTEM image of Au/CBO sample, presented in Figure 4b, provided detailed information about
  • /CBO composite. (a) TEM and (b) HRTEM images of the 2.5 wt % Au/CBO composite. XPS high-resolution spectra of the 2.5 wt % Au/CBO composite: (a) Au 4f; (b) Cu 2p; (c) Bi 4f and (d) O 1s. (a) TC degradation dynamics under visible-light irradiation. (b) Changes of the characteristic absorption of TC when
PDF
Album
Supp Info
Full Research Paper
Published 04 Jul 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • materials. High resolution transmission electron microscopy (HRTEM) analysis shows a remarkable difference between the carbon structures synthetized (Figure 1). Very regular structures were obtained for the CNT sample (Figure 1a), while the N-CNT sample presented a “bamboo-like” structure typically found in
  • N-doped CNTs (Figure 1b) [39], and the structure of the S-doped CNTs presents some alterations (bulbous segments, Figure 1c), which are different than those observed for the N-CNTs (bamboo structure). The N-CNTsHT show similar structure to the HRTEM observations (Figure 1d). Low magnification TEM
  • the structure of these catalysts, additional characterization was carried out on the Pt3Co/N-CNT and Pt3Ni/N-CNTHT samples, which presented the best performance in the ORR. We first used HRTEM to analyze the product resulting from the first step of the catalyst preparation, i.e., the reduction of the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • diffraction (XRD; X’Pert Pro, Philips, Eindhoven, The Netherlands), while their morphology was characterized by scanning electron microscopy (SEM; Quanta 250, FEI, Hillsboro, OR, USA). High-resolution transmission electron microscopy (HRTEM) micrographs were obtained using an FEI Tecnai F20 field emission gun
PDF
Album
Full Research Paper
Published 07 Jun 2019

Synthesis and characterization of quaternary La(Sr)S–TaS2 misfit-layered nanotubes

  • Marco Serra,
  • Erumpukuthickal Ashokkumar Anumol,
  • Dalit Stolovas,
  • Iddo Pinkas,
  • Ernesto Joselevich,
  • Reshef Tenne,
  • Andrey Enyashin and
  • Francis Leonard Deepak

Beilstein J. Nanotechnol. 2019, 10, 1112–1124, doi:10.3762/bjnano.10.111

Graphical Abstract
  • axis. From the HRTEM images, a periodicity of ≈1.16 nm along the c-axis was concluded (Figure 5a). The analysis of HAADF-STEM images of a SrxLa1−xS–TaS2 nanotube from a sample containing 20 atom % Sr substitution shows that nanotubes with different folding vectors are present. For example, in Figure 6a
  • was obtained in the analyzed nanotubes. The S map shows more or less uniform distribution in the nanotube. HRTEM imaging and SAED analysis were carried out on a SrxLa1−xS–TaS2 sample with 60 atom % Sr in the precursor (40 atom % La). The nanotube was found to have an interlayer periodicity of ≈1.18 nm
  • the lattice. EDX quantification indicated that the La/Sr ratio is in the range 38–61 (La):62–39 (Sr) in the analyzed nanotubes. This analysis shows that the Sr atoms can substitute for the La atoms up to about 60 atom %. The HRTEM/EDX analysis does not indicate any Sr substitution into the TaS2
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • sequentially. High-resolution transmission electron microscopy (HRTEM) shows that the four fractions are well-dispersed spherical particles of diameter 3.0 ± 0.6, 2.3 ± 0.5, 1.7 ± 0.4, and 1.2 ± 0.4 nm. Proton nuclear magnetic resonance spectroscopy suggests that disulfide, excess ligands and gold(I) complexes
  • supernatant was dried with N2 which was designated as the residue. Characterization of the structure and optical properties of gold nanoclusters High-resolution transmission electron microscopy (HRTEM) measurements were recorded on a JEOL 2010 transmission electron microscope (Tokyo, Japan) operating at an
  • spectrophotometer (Varian, Palo Alto, CA, USA). The PL properties of the samples were acquired on a QM4 spectrofluorometer (Photon Technology International, Lawrenceville, NJ, USA). Results and Discussion TEM characterization Figure 2A shows an HRTEM image of the crude AuNC product. It is clearly observed that the
PDF
Album
Full Research Paper
Published 25 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • the acid-treated CNTs and the catalysts were investigated by TEM and HRTEM (Figure 3). The acid-treated CNTs have a smooth external surface (Figure 3a) that becomes coarse after being loaded with active metal oxide (Figure 3b). Additionally, the HRTEM images show the presence of catalysts nanoflakes
  • , also verifying the generation of metal oxide catalysts on the CNT surface. The EDX spectrum (Figure 3d) shows signals of Mn, Cu, Fe, O and C. Clear lattice fringes of the metal oxides cannot be observed in the HRTEM images, indicating the generation of amorphous materials, which is consistent with the
  • catalysts: (a) acid-treated CNTs, (b) 1% MnO2–CuO–Fe2O3/CNTs, (c) 2% MnO2–CuO–Fe2O3/CNTs, (d) 4% MnO2–CuO–Fe2O3/CNTs, (e) 6% MnO2–CuO–Fe2O3/CNTs, and (f) Mn–Cu–FeOx/CNTs-IWIM. TEM and HRTEM images, as well as EDX spectrum of CNT-based samples: (a) CNTs, (b–d) 4% MnO2–CuO–Fe2O3/CNTs. XPS results of the as
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • , US) and then dried at ambient temperature for 24 h. High-resolution transmission electron microscopy (HRTEM) images were acquired using a high-resolution transmission electron microscope (JEM 2100, JEOL Inc., Peabody, MA, US) equipped with a 4k × 4k CCD camera (Gatan, Pleasanton, CA, US). Samples
  • Figure 2a and Figure 2c; cf. Figure 2d and Figure 2f), is that WS2-NT-CM is significantly less aggregated in aqueous dispersion compared to WS2-NT. Here, too, the electrostatic repulsion provided by CAN-mag is probably the reason. In the HRTEM image of WS2-NT-CM (Figure 2e), the crystalline nanoparticles
  • of maghemite are easily observed, including visible lattice fringes (marked in yellow). TEM images of WS2-NT-CM-PEI (Figure 2g) and WS2-NT-CM-PAA (Figure 2i) show that the dark CAN-mag composite is surrounded by a lighter substance, namely the organic polymer (PEI or PAA). A closer look by HRTEM into
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

Ultrasonication-assisted synthesis of CsPbBr3 and Cs4PbBr6 perovskite nanocrystals and their reversible transformation

  • Longshi Rao,
  • Xinrui Ding,
  • Xuewei Du,
  • Guanwei Liang,
  • Yong Tang,
  • Kairui Tang and
  • Jin Z. Zhang

Beilstein J. Nanotechnol. 2019, 10, 666–676, doi:10.3762/bjnano.10.66

Graphical Abstract
  • Figure 1a, the diffraction pattern clearly indicates that orthorhombic CsPbBr3 PNCs (PDF card #18-0364) were formed. No other phases were observed, suggesting the high purity of the samples. The TEM image shown in Figure 1b demonstrates that the CsPbBr3 PNCs have a regular square morphology. HRTEM was
  • nanoparticles that have been reported before [23][35][36]. The HRTEM image shown in Figure 4d demonstrates an interplanar spacing of 0.39 nm, corresponding to the (300) crystal plane of bulk Cs4PbBr6, which is also consistent with the PDF card #73-2478. The size of the Cs4PbBr6 PNCs is defined here as the
  • , JEM-2100F, JEOL, Japan) with an accelerating voltage of 100 kV. High-resolution TEM (HRTEM) was carried out on a JEOL JEM-2100F instrument operating at 200 kV. The crystal phases of the products were measured using an X-ray diffractometer (XRD, D8-Advance, Bruker, Germany) with a Cu Kα radiation
PDF
Album
Supp Info
Full Research Paper
Published 06 Mar 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and thermoelectric measurements. XRD measurements were performed using a Bruker D8 Avance diffractometer with Cu Kα (1.5406 Å) radiation. TEM investigations were carried out using a LIBRA 200 FE HRTEM. Gatan software [22] was used
  • for analysis of HRTEM images of samples. Scanning electron microscopy with energy-dispersive spectroscopy (SEM EDS) was performed using a field-emission scanning electron microscope (FE-SEM) [MIRA\\, TESCAN]. Temperature-dependent thermoelectric measurements were carried out for all samples with size
  • with Bi2Te3. High-resolution transmission electron microscopy Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images of Bi2Te3:Ag samples annealed at 573 K are shown in Figure 3. Figure 3a,b shows the bright-field image and the HRTEM image of the as-prepared Bi2Te3 samples with
PDF
Album
Full Research Paper
Published 04 Mar 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • (HRTEM, JEOL JEM-2100F) images were used for investigating surface topology. The content of sulfur in the S-3D-RGO@MWCNT composite was confirmed using thermogravimetric analysis (TGA, SHIMADZU DTG-60) in Ar atmosphere. Raman spectra were recorded on Raman spectrometer (Raman, Renishaw) using 532 nm
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • size of the CN-5 QDs has been confirmed from the HRTEM results. Figure 9 exhibits HRTEM images of the GCN-5 QDs. It can clearly be seen that CN-5 QDs are decorated (marked by circle and arrows) onto the GO surface with an average diameter of 2–3 nm. A clear lattice spacing of 0.336 nm is also observed
  • for the CN-5 QDs, which corresponds to the (002) plane of hexagonal g-C3N4, indicating crystalline nature of the QDs [40]. Hence, TEM, HRTEM, and FESEM studies confirm the morphology and size of the NFs and QDs and also confirm the presence of rGO in the hybrid material. The band gaps of the prepared
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • 1200 °C to obtain the final material (Figure 1, right). The amount of nickel added was varied from 5 up to 60 mg of nickel per gram of equivalent carbide. The effect of nickel catalyst on the microstructure of final carbon was investigated using XRD, temperature-programmed oxidation (TPO), HRTEM and
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • the TEM images of the cylinder-shaped NWs grown at 1000 °C. An HRTEM image of a single NW across the width is shown in Figure 3a. The image related to the single cylindrical NW shows the crystalline (110) plane which belongs to the rutile tetragonal SnO2 with a d spacing value of 3.36 Å (Figure 3b
  • not possess extended defects. Figure 4 shows the TEM images of the NB grown at 1000 °C. The HRTEM image of the single NB shows the crystalline (110) plane of the rutile tetragonal SnO2 with a d spacing of 3.36 Å (Figure 4a). The SAED pattern corroborates the single crystalline character of the NB
  • , insets in 1a and 1b show a single NW with a Au nanoparticle at the tip, (c) flower creeper-like, self catalytically grown, belt-shaped NWs, and (d) NBs after ultra-sonication, where the inset shows a tapered NB. TEM images of square-shaped NWs. (a) Low-magnification image of a single NW. (b) HRTEM image
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • -magnification TEM images; (d) HRTEM image; (e) SAED pattern of Ni(OH)2 nanopetals. XPS spectra of the elements of the as-spun ribbon, as-dealloyed ribbon and as-synthesized electrode: (a) survey spectrum, (b) Ti 2p, (c) Zr 3d, (d) Ni 2p and (e) O 1s. (a) CV curves of the Ni(OH)2/Ni-NF/MG-2, Ni(OH)2/Ni-NF/MG-5
PDF
Album
Full Research Paper
Published 25 Jan 2019
Other Beilstein-Institut Open Science Activities