Search results

Search for "Si substrate" in Full Text gives 197 result(s) in Beilstein Journal of Nanotechnology.

Evolution of Ag nanostructures created from thin films: UV–vis absorption and its theoretical predictions

  • Robert Kozioł,
  • Marcin Łapiński,
  • Paweł Syty,
  • Damian Koszelow,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2020, 11, 494–507, doi:10.3762/bjnano.11.40

Graphical Abstract
  • , modelled as spheres truncated by 25% and flattened on the y axis to 60% of the initial size (Figure 1) on a Si substrate were reproduced on a sample of size 2.7 × 3.0 µm (Figure 2). Modelling the whole sample with regards to a realistic shape of the nanoparticles based on TEM images (see Figure 8 below
  • , illustrating the shape of the Ag nanoparticles, modelled as truncated and flattened spheres (brown) on a Si substrate (yellow), in air (light blue). Top view of the simulation setup. SEM images of the films after annealing at 250 °C for 15 min. Initial film thickness was: (a) 1 nm, (b) 2 nm, (c) 3 nm, (d) 4 nm
PDF
Album
Full Research Paper
Published 25 Mar 2020

Nanosecond resistive switching in Ag/AgI/PtIr nanojunctions

  • Botond Sánta,
  • Dániel Molnár,
  • Patrick Haiber,
  • Agnes Gubicza,
  • Edit Szilágyi,
  • Zsolt Zolnai,
  • András Halbritter and
  • Miklós Csontos

Beilstein J. Nanotechnol. 2020, 11, 92–100, doi:10.3762/bjnano.11.9

Graphical Abstract
  • structure (top to bottom) of 200 nm AgI, 22.5 nm Ag3I and 43 nm Ag after iodine exposure on the Ti/SiO2/Si substrate. Nanometer-scale Ag/AgI/PtIr nanojunctions were created by bringing the PtIr tip into direct contact with the thin-film surface while a constant bias voltage of 100 mV was applied on the
PDF
Album
Full Research Paper
Published 08 Jan 2020

The effect of heat treatment on the morphology and mobility of Au nanoparticles

  • Sven Oras,
  • Sergei Vlassov,
  • Simon Vigonski,
  • Boris Polyakov,
  • Mikk Antsov,
  • Vahur Zadin,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2020, 11, 61–67, doi:10.3762/bjnano.11.6

Graphical Abstract
  • , Latvia 10.3762/bjnano.11.6 Abstract In the present paper, we investigate the effect of heat treatment on the geometry and mobility of Au nanoparticles (NPs) on a Si substrate. Chemically synthesized Au NPs of diameter ranging from 5 to 27 nm were annealed at 200, 400, 600 and 800 °C for 1 h. A change in
  • particles became immovable again. This effect was attributed to the diffusion of Au into the Si substrate and to the growth of the SiO2 layer. Keywords: annealing; atomic force microscopy (AFM); Au nanoparticles; manipulation; melting; nanotribology; Introduction Gold is one of the most prominent
  • diffusion of Au into the Si substrate. It is known that gold diffuses into silicon at higher temperatures by the so-called kick-out mechanism, in which self-interstitials present at thermal equilibrium displace substitutionally dissolved Au atoms into interstices, such that these may undergo rapid
PDF
Album
Full Research Paper
Published 06 Jan 2020

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • diameter was about 1 μm. The signal detector was a Renishaw CCD camera (1040 × 256). The Raman spectrum was validated with a standard Si substrate, without finding specific peaks. The Raman intensity peaks of the R6G probe and malachite green molecules were chosen as 1362 cm−1 or 1614 cm−1, which are the
PDF
Album
Full Research Paper
Published 13 Dec 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • Si substrate by electron beam evaporation. The conditions during the growth of the gold thin film were similar to the ones during the growth of the samples SiNW1 and SiNW2. The black regions correspond to the uncovered silicon areas, while the white region represents the deposited Au. It is evident
PDF
Album
Full Research Paper
Published 31 Oct 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • such that the Si substrate spots together with the ring spots of the SiGe polycrystalline layer were measured. A description of this analysis is given in our previous work [23]. The bright spots are due to Si substrate and the smaller and less bright spots are due to SiGe NCs. The white circular cloud
  • photocurrent spectra of as-grown structure (SiGe via dcMS and HiPIMS) are shown in Figure 7a. Deconvolution was carried out to obtain the individual peaks. The observed peaks were assigned to interface related localized states (peak I), the photo effect from NCs (peak N) and capacitive coupling from Si
  • substrate, i.e., surface photo-voltage (SPV) and gating effect (peak S). Figure 7b shows the photocurrent for structures of the same batch that underwent annealing procedure for a short period of 1 min at different temperatures. A large increase in intensity was observed by increased annealing temperature
PDF
Album
Full Research Paper
Published 17 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • novel device concepts by utilizing its angle-resolved and wavelength-dependent properties. Methods Exfoliation and characterization of 1T’-WTe2 flakes The 1T’-WTe2 single crystals were purchased from XianFeng Nano Corporation. A blue film was used to exfoliate 1T’-WTe2 onto the N++-doped Si substrate
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • on the tip and the bottom of the Si substrate was fixed. Because the contact stiffness is the derivative of loading force to elastic deformation, we used the following approximation [43], Here, ΔFi is the difference of the applied forces between load steps i + 1 and i, and Δdi is the difference of
  • thickness. Such a behaviour is due to the influence of the Si substrate. When the bottom layer becomes thicker, the substrate effect is less significant. For the middle layer thickness, there is an inflection point at approximately 300 nm. The contact stiffness contrast first drastically increases with
PDF
Album
Full Research Paper
Published 07 Aug 2019

Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology

  • Loïc Crouzier,
  • Alexandra Delvallée,
  • Sébastien Ducourtieux,
  • Laurent Devoille,
  • Guillaume Noircler,
  • Christian Ulysse,
  • Olivier Taché,
  • Elodie Barruet,
  • Christophe Tromas and
  • Nicolas Feltin

Beilstein J. Nanotechnol. 2019, 10, 1523–1536, doi:10.3762/bjnano.10.150

Graphical Abstract
  • defined by: where K the equivalent elastic modulus of the NP and the substrate defined by: where Ei and νi are the Young’s modulus and the Poisson’s ratio of the sphere and the half space. The depth of indentation δ, i.e., the elastic displacement is defined by: In the case of silica NPs deposited on a Si
  • substrate under ambient conditions, since the area/volume ratio becomes important, capillary adhesion forces must be taken into account. Deformations of the silica NP and substrate can be assessed using the model developed by Derjaguin, Muller and Toporov (DMT) [33]. This model describes the elastic
PDF
Album
Full Research Paper
Published 26 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • than 10 nm were detected in the map of the surface contact potential. A higher lift height led to a vanishing of the contrast and a lower value resulted in a decrease in reproducibility (data not shown). The results are in a good agreement with the KPFM contrast of nanodiamonds on a Si substrate, where
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • top contacts and on the back side of the Si substrate, respectively. A more detailed description of the growth and processing procedure as well as the EL and I–V characteristics of the NW-ensemble LED can be found in [12]. The EL and I–V measurements on single-NW LEDs were carried out in a Zeiss
  • -Si interface RGaN/Si, the contact resistance Rc between p-GaN and the tungsten probe and the resistance of the NW LED RNW itself. The contributions of the n-Si substrate and the measurement setup were determined to be in the range of a few ohms and therefore can be neglected for our considerations
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • study. The approximately 1.6 ± 0.3 nm thick amorphous SiO2 layer is also observed, isolating the nanodot from the Si substrate. A power spectrum (PS) generated from the HAADF image is presented in Figure 2b. Figure 2c presents the simulated diffraction patterns along the [110] zone axis for Si and
  • maps of that area for Se, Cu, In, Si, and O. The EDS mapping confirms that the nanodots are grown on top of a SiO2 layer, as shown by the presence of an oxygen-containing layer between the dots and the Si substrate. An EDS quantification performed in this nanodot (and several others) confirmed the
  • substrates, bare (as-grown) nanodot samples and CdS-covered nanodot samples, as shown in Figure 4. The PL spectra of the bare Si and CIS samples, Figure 4a, show only the common sharp lines related with the Si substrate [41][42]. The observed lines correspond to the phonon replicas (TA, TO and TO+OΓ) of the
PDF
Album
Full Research Paper
Published 22 May 2019

Fabrication of silver nanoisland films by pulsed laser deposition for surface-enhanced Raman spectroscopy

  • Bogusław Budner,
  • Mariusz Kuźma,
  • Barbara Nasiłowska,
  • Bartosz Bartosewicz,
  • Malwina Liszewska and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2019, 10, 882–893, doi:10.3762/bjnano.10.89

Graphical Abstract
  • . A very sharp edge for height (layer thickness) measurements was obtained in this way due to the low adhesion of the silver films to the Si substrate. AFM measurements were carried out in three different areas on the surface of each sample. Then for each sample ten AFM cross sections from different
  • the Si substrate by laser ablation (PLD) registered in a wide range of binding energy, and Ag 3d and Ag-MNN Auger band registered in a narrow range of energy (insert). Reflectance spectra of fabricated Ag nanoisland films: a) for samples with the layers deposited at a laser fluence of 5.56 ± 0.37J/cm2
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • (Figure 4b) to 4 s (Figure 4c). Because of the Si substrate, the Si 200 peak is visible in all diffractograms. Starting with the spectra of the pristine Zn-alkoxide layers acquired at 25 °C before calcination (dark blue lines in Figure 4a–c), no ZnO peaks are observed for the sample deposited with 1 s
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Temperature-dependent Raman spectroscopy and sensor applications of PtSe2 nanosheets synthesized by wet chemistry

  • Mahendra S. Pawar and
  • Dattatray J. Late

Beilstein J. Nanotechnol. 2019, 10, 467–474, doi:10.3762/bjnano.10.46

Graphical Abstract
  • onto a Si substrate and heated at 100 °C on a hot plate. After complete evaporation, the substrate was annealed in a chemical vapour deposition system at 500 °C in argon gas atmosphere for 5 h. Supporting Information File 1, Figure S1 shows the schematic of the PtSe2 nanosheet synthesis steps. Sensor
  • carried out at ambient pressure and room temperature. Results and Discussion Structural characterization The structural characterization was carried out using X-ray diffraction (XRD) and Raman spectroscopy. Figure 1a shows the typical XRD pattern of the as-prepared sample deposited on a Si substrate. XRD
  • -synthesized PtSe2 sample. The X-ray photoelectron spectroscopy (XPS) spectra of the Pt 4f and Se 3d regions acquired on a PtSe2 nanosheet sample were carried out on a film deposited on the Si substrate. The Figure 4a represents the fitted spectrum for Pt 4f7/2 and Pt 4f5/2 with binding energy 72.55 eV and
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Sub-wavelength waveguide properties of 1D and surface-functionalized SnO2 nanostructures of various morphologies

  • Venkataramana Bonu,
  • Binaya Kumar Sahu,
  • Arindam Das,
  • Sankarakumar Amirthapandian,
  • Sandip Dhara and
  • Harish C. Barshilia

Beilstein J. Nanotechnol. 2019, 10, 379–388, doi:10.3762/bjnano.10.37

Graphical Abstract
  • thickness was coated on the Si (100) substrate by using the thermal evaporation (Hind Vacuum, India) technique under a base pressure of 5.0 × 10−6 mbar. The Si substrate coated with the Au film, used as a catalyst in the growth of SnO2 NWs, was placed 10 mm away from the precursor material in the Al2O3 boat
  • in RGB format and spectral response (gamma) and light intensity corrections were applied. Results and Discussion Growth and characterization FESEM images of the NWs with different morphology are shown (Figure 1). Densely packed square-shaped NWs grew on the Si substrate (Figure 1a) at a temperature
  • the cylindrical-shaped NWs densely grown on the Si substrate at a temperature of 1000 °C. Similar to the square-shaped NWs, the surface appears to be smooth and the Au nanoparticle at the tip supports the VLS mechanism (inset Figure 1b) [24][25]. The length and width of the cylindrical-shaped NWs are
PDF
Album
Supp Info
Full Research Paper
Published 07 Feb 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • performance over a wide range of angles of the incidence light, up to 60°. Scanning electron microscopy pictures of (a) bare and (b) coated nanowires on the c-Si substrate. In the inset of (b), the enlargement of a single c-Si nanowire wrapped with supporting layers is depicted, showing excellent coating
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing

  • Xiaomo Xu,
  • Thomas Prüfer,
  • Daniel Wolf,
  • Hans-Jürgen Engelmann,
  • Lothar Bischoff,
  • René Hübner,
  • Karl-Heinz Heinig,
  • Wolfhard Möller,
  • Stefan Facsko,
  • Johannes von Borany and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2018, 9, 2883–2892, doi:10.3762/bjnano.9.267

Graphical Abstract
  • , ΔE = 5 eV) as ISi. We obtain I0 by recording an object-free TEM image in vacuum using the same imaging parameters as for the EFTEM image. In order to determine d, we additionally record a zero-loss filtered image in the Si substrate region, which can be expressed by IZL = I0exp(−d/λin) with λin the
  • total MFPL for 300 keV electrons in Si. Using λin = 180 nm for 300 keV electrons [25] we can calculate the thickness d of the TEM lamella in the Si substrate. By inserting the thickness d in Equation 8 one can determine λSi = 500 nm. The knowledge of this value allows us to convert the Si-plasmon-loss
  • of parameters found (170 Si+ nm−2, 1323 K, 120 s). Static TRIDYN-based simulation of the mixing efficiency for broad (a) and focused (b) beam irradiation. The graph in (a) shows the mixing efficiency of a 25 keV Ne+ broad beam on a layer stack of 25 nm Si and 6.5 nm SiO2 on a Si substrate. The
PDF
Album
Full Research Paper
Published 16 Nov 2018

Au–Si plasmonic platforms: synthesis, structure and FDTD simulations

  • Anna Gapska,
  • Marcin Łapiński,
  • Paweł Syty,
  • Wojciech Sadowski,
  • Józef E. Sienkiewicz and
  • Barbara Kościelska

Beilstein J. Nanotechnol. 2018, 9, 2599–2608, doi:10.3762/bjnano.9.241

Graphical Abstract
  • on the sample. The time envelope of the pulse was set to be rectangular. It provided the single wavelength of 395 nm (which is the off-resonant transition for Si) for exactly 10 fs. The sensor was placed in the zx-plane, 10 nm above the Si substrate. The second simulation, by using FDTD and discrete
PDF
Album
Full Research Paper
Published 28 Sep 2018

Magnetism and magnetoresistance of single Ni–Cu alloy nanowires

  • Andreea Costas,
  • Camelia Florica,
  • Elena Matei,
  • Maria Eugenia Toimil-Molares,
  • Ionel Stavarache,
  • Andrei Kuncser,
  • Victor Kuncser and
  • Ionut Enculescu

Beilstein J. Nanotechnol. 2018, 9, 2345–2355, doi:10.3762/bjnano.9.219

Graphical Abstract
  • obtained from single nanowire measurements is shown in the upper inset. (a) Ni–Cu alloy nanowires placed on SiO2/Si substrates between the interdigitated metallic electrodes obtained by photolithography; (b) alignment of the SiO2/Si substrate with the sample holder of the microscope; (c) the sample covered
PDF
Album
Supp Info
Full Research Paper
Published 30 Aug 2018

Optimization of the optical coupling in nanowire-based integrated photonic platforms by FDTD simulation

  • Nan Guan,
  • Andrey Babichev,
  • Martin Foldyna,
  • Dmitry Denisov,
  • François H. Julien and
  • Maria Tchernycheva

Beilstein J. Nanotechnol. 2018, 9, 2248–2254, doi:10.3762/bjnano.9.209

Graphical Abstract
  • a diameter of 1 µm. It is positioned on a SiO2 layer on top of a Si substrate. The thickness of the SiO2 layer is varied to find the minimum thickness necessary to avoid light coupling from the platform components to the absorbing Si substrate. Following the experimental realization of [30], an
  • etching after the metallic contact deposition without any damage of the device, and the SiNx waveguide can be fabricated after this etching step. Taking into account that the Si substrate is strongly absorbing at 400 nm, a simulation with different thicknesses of the SiO2 layer was done to evaluate the
  • impact of the SiO2 spacer thickness on the losses due to the light coupling and absorption in Si. The results demonstrate that for a SiO2 thickness larger than 300 nm, the absorption of the Si substrate becomes negligible due to total internal reflection at the GaN/SiO2 interface and the transmission of
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Phosphorus monolayer doping (MLD) of silicon on insulator (SOI) substrates

  • Noel Kennedy,
  • Ray Duffy,
  • Luke Eaton,
  • Dan O’Connell,
  • Scott Monaghan,
  • Shane Garvey,
  • James Connolly,
  • Chris Hatem,
  • Justin D. Holmes and
  • Brenda Long

Beilstein J. Nanotechnol. 2018, 9, 2106–2113, doi:10.3762/bjnano.9.199

Graphical Abstract
  • the Si substrate. MLD-doped 66 nm SOI was further examined using secondary ion mass spectrometry (SIMS) to attain a more detailed view of total dopant distribution in the substrate, which is complementary to previous measurements of active carrier concentrations through ECV. Data shown in Figure 7
PDF
Album
Supp Info
Full Research Paper
Published 06 Aug 2018

A differential Hall effect measurement method with sub-nanometre resolution for active dopant concentration profiling in ultrathin doped Si1−xGex and Si layers

  • Richard Daubriac,
  • Emmanuel Scheid,
  • Hiba Rizk,
  • Richard Monflier,
  • Sylvain Joblot,
  • Rémi Beneyton,
  • Pablo Acosta Alba,
  • Sébastien Kerdilès and
  • Filadelfo Cristiano

Beilstein J. Nanotechnol. 2018, 9, 1926–1939, doi:10.3762/bjnano.9.184

Graphical Abstract
  • etching time of a 20 nm thick Si0.73Ge0.27 boron-doped layer (1018 cm−3) grown on top of a Si substrate. TEM images show a clear decrease of the layer thickness, while all the techniques are in mutual agreement, therefore validating ellipsometry as a unique thickness characterization method for the
  • on top of a Si substrate. We first describe the Van der Pauw structure and the conventional Hall effect setup. Then we will present the differential Hall effect measurements and calculations and we will discuss the limitations of the technique. Van der Pauw structure and Hall effect measurements on
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2018

Synthesis of hafnium nanoparticles and hafnium nanoparticle films by gas condensation and energetic deposition

  • Irini Michelakaki,
  • Nikos Boukos,
  • Dimitrios A. Dragatogiannis,
  • Spyros Stathopoulos,
  • Costas A. Charitidis and
  • Dimitris Tsoukalas

Beilstein J. Nanotechnol. 2018, 9, 1868–1880, doi:10.3762/bjnano.9.179

Graphical Abstract
  • , several scenarios, such as derformation, fragmentation and implantation of the NPs, are possible [40][43]. In this study we observed partial and complete deformation of the NPs. 3D NTF patterning In order to fabricate 3D NTF patterns, a spin-coated PMMA film on a Si substrate was initially patterned via e
  • composed of orthorhombic HfO2 nanocrystallites indicated by arrows exhibiting lattice fringes of d = 0.295 nm corresponding to (101) HfO2 embedded in an amorphous layer. X-ray pattern of hafnium NPs on Si substrate synthesized for different aggregation-zone lengths D = 50, 75 and 100 nm. a) Bright-field
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2018

Toward the use of CVD-grown MoS2 nanosheets as field-emission source

  • Geetanjali Deokar,
  • Nitul S. Rajput,
  • Junjie Li,
  • Francis Leonard Deepak,
  • Wei Ou-Yang,
  • Nicolas Reckinger,
  • Carla Bittencourt,
  • Jean-Francois Colomer and
  • Mustapha Jouiad

Beilstein J. Nanotechnol. 2018, 9, 1686–1694, doi:10.3762/bjnano.9.160

Graphical Abstract
  • . Additionally, the FFT pattern as shown in Figure 4e for the yellow squared area in Figure 4d, confirms well-crystallized MoS2 NSs with the c-axis being normal to the NSs. Between, the vertically aligned MoS2 NSs and the SiO2/Si substrate, a layer (marked with “B” in Figure 4a) containing Mo, S and O (37–55 nm
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2018
Other Beilstein-Institut Open Science Activities