Search results

Search for "adhesion" in Full Text gives 419 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • mediates solid tumorigenesis and metastatic behavior [31]. The mechanism of homotypic aggregation is the result of multifactorial action and is closely related to tumor-specific antigens (e.g., Thomsen–Friedenreich antigen [29], carcinoembryonic antigen [32], and glycoprotein 100 [33]) and other adhesion
  • closely associated with membrane-associated components such as syndecan-1 [50], vascular cell adhesion molecule-1 (VCAM-1), and activated leukocyte cellular adhesion molecule (ALCAM) [51]. In a study on the ability of cancer cell membranes to penetrate the BBB, NPs coated with cell membranes from melanoma
  • brain metastasis of some tumors, He et al. tried to apply the 4T1 breast cancer cell membrane to the treatment of ischemic stroke [26]. Expression of syndecan-1 on breast cancer cell membranes promotes migration across the BBB and increases adhesion to perivascular areas of the brain [50]. The
PDF
Album
Review
Published 27 Feb 2023

Batch preparation of nanofibers containing nanoparticles by an electrospinning device with multiple air inlets

  • Dong Wei,
  • Chengwei Ye,
  • Adnan Ahmed and
  • Lan Xu

Beilstein J. Nanotechnol. 2023, 14, 141–150, doi:10.3762/bjnano.14.15

Graphical Abstract
  • the fibers. When the air flow rate was 100 m3/h (Figure 3b), the adhesion between fibers was weakened, resulting in the decrease of average fiber diameter (719.28 ± 108.43 nm) and a reduction of nanoparticle agglomeration in the fibers. When the air flow rate was 50 m3/h (Figure 3c), there was almost
  • no adhesion between fibers. The average diameter of fibers was smaller (596 ± 127.02 nm), and the nanoparticles in the fibers were not agglomerated and evenly distributed. When there was no air flow (Figure 3d), the particles in the fibers were not only very few, but also agglomerated. This might be
PDF
Album
Full Research Paper
Published 23 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • adhesion, etc.) [32][33]. The deposition techniques are also costly, time-consuming and restrictive (under vacuum, numerous steps, toxic chemicals, etc.), which limits industrial scale-up options. Nanometal-polymer coatings offer an interesting alternative to the aforementioned metallized textiles. Such
  • [41]. The polymer coating adapts to various textile shapes, improves the adhesion between the MNPs and the substrate by compensating internal stresses and maintains the antimicrobial properties of the NPs. As the nanoparticles are embedded inside the polymer matrix, they are protected from external
  • and plate diffusion assays) of AgNP@polymer nanocomposites-coated textiles against Escherichia coli (E. coli) and Candida albicans (C. albicans) strains. The mechanical properties (flexibility, adhesion, abrasion) were also studied using a Mini-Martindale device, a standard scratch test kit, scanning
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • Discussion Morphology of Ag–Al alloy thin films The deposition of silver–aluminum thin films on silicon was accomplished by magnetron co-sputtering using a silver target and an aluminum target. To allow for a good adhesion between silicon and the alloy thin film, a silver adhesion layer was deposited prior
  • 100 mm and the angle between the magnetron source axis and the normal to the substrate was 30°. The substrate was silicon. Prior to each deposition, a 50 nm Ag adhesion layer was grown by magnetron sputtering. While the power on the aluminum target was fixed to 150 W, the power on the silver target
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Gap-directed chemical lift-off lithographic nanoarchitectonics for arbitrary sub-micrometer patterning

  • Chang-Ming Wang,
  • Hong-Sheng Chan,
  • Chia-Li Liao,
  • Che-Wei Chang and
  • Wei-Ssu Liao

Beilstein J. Nanotechnol. 2023, 14, 34–44, doi:10.3762/bjnano.14.4

Graphical Abstract
  • nanoscale surface patterns, whereas conventional photolithography methods are limited by diffraction during the illumination step and under/overetching during the development process [17]. In soft lithography, the deformation and collapsing of rubber stamp structures occur due to the adhesion between the
PDF
Album
Full Research Paper
Published 04 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • individualized nanotubes. Selective extraction of small-diameter semiconducting SWCNTs Riboflavin demonstrates high adhesion to the SWCNT surface; thus, it can be utilized as both surfactant and eluent to individualize SWCNTs and precisely extract those that feature a denser riboflavin coating from samples with
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • , associates of macromolecules are formed in the solution, and the influence of adhesion processes decreases, but the cohesive forces increase. In the entire thickness range from 3 nm to 1 µm, the films are solid, without significant defects and/or pin holes. The polymer films were studied by atomic force
PDF
Album
Full Research Paper
Published 19 Dec 2022

Dry under water: air retaining properties of large-scale elastomer foils covered with mushroom-shaped surface microstructures

  • Matthias Mail,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Wilhelm Barthlott,
  • Stanislav N. Gorb and
  • Lars Heepe

Beilstein J. Nanotechnol. 2022, 13, 1370–1379, doi:10.3762/bjnano.13.113

Graphical Abstract
  • effective large scale production. Meanwhile, a novel biomimetic surface is commercially available and produced on a large scale: an adhesive elastomeric film with mushroom-shaped surface microstructures that mimic the adhesion system of animals. In this study, we show that these films, which have been
  • adhesion systems. They are inspired by the feet of beetles, flies, spiders and geckos and have been shown to strongly enhance adhesion [37][38][39][40][41][42][43][44][45][46][47][48][49][50][51]. But these surfaces were also shown to be the structure of choice to produce omniphobic surfaces, their wetting
PDF
Album
Full Research Paper
Published 21 Nov 2022

Straight roads into nowhere – obvious and not-so-obvious biological models for ferrophobic surfaces

  • Wilfried Konrad,
  • Christoph Neinhuis and
  • Anita Roth-Nebelsick

Beilstein J. Nanotechnol. 2022, 13, 1345–1360, doi:10.3762/bjnano.13.111

Graphical Abstract
  • projects. The actual project, whose history will be reconstructed in this contribution and in which two co-authors participated (C. N. and W. K.), dealt with a technical problem encountered during steel production. The aim was to find a (biomimetic) way to prevent the adhesion of liquid iron at 1500 °C to
PDF
Album
Perspective
Published 17 Nov 2022

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • , we will focus on characteristics and mechanisms that may influence the nano-punching process. Because of the size effect and atomic adhesion between the punch and the workpiece, the nano-punching process may present different behaviors in comparison to the conventional punching process. Besides
  • simulation model. Besides, there is a clearance between the punch and the substrate during the nano-punching process, as shown in Figure 1b. The initial distance between the punch and the workpiece was set to 10 Å, in order to prevent internal adhesion of atoms in the equilibrium stage which may lead to
  • the adhesion force increases with an increase of the contact area between the punch and the workpiece. However, when the debris crumple, the slip phenomenon appears [61]. Besides, comparing the three crystal orientation curves, O1 shows a more stable curve during the loading process, while the O2 and
PDF
Album
Full Research Paper
Published 10 Nov 2022

Growing up in a rough world: scaling of frictional adhesion and morphology of the Tokay gecko (Gekko gecko)

  • Anthony J. Cobos and
  • Timothy E. Higham

Beilstein J. Nanotechnol. 2022, 13, 1292–1302, doi:10.3762/bjnano.13.107

Graphical Abstract
  • Animals attach to surfaces in numerous ways, including claws, suction, and both wet and dry adhesion. In fact, some animals can utilize multiple attachment mechanisms [1][2], leading to multifunctionality across surfaces of varying roughness. Dry adhesion is found in many invertebrates and squamate
  • reptiles, and has been a focus of both engineering and biological studies [3]. Models are frequently used to describe adhesion, such as the Johnson–Kendall–Roberts (JKR) model [4]. In this case, the force required to pull an elastic sphere from a flat surface is determined using the radius of the sphere
  • and the adhesion energy between a sphere and the surface. More recent studies use the JKR model to determine the role of setal density in adhesion from insects to geckos [5]. Despite many advancements in our understanding of adhesion across organisms, few studies have incorporated ecologically
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2022

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • ). Subsequently, by means of a newly established peel-off test, the adhesion of an electrospun polyamide fiber-based nonwoven was quantified on such LIPSS-covered aluminium alloy, steel, and titanium alloy samples, as well as on polished (flat) control samples as reference and, additionally, on samples with
  • randomly rough surfaces. The latter revealed that the adhesion of electrospun nanofiber nonwoven is significantly lowered on the nanostructured surfaces compared with the polished surfaces. Keywords: biomimetics; electrospinning; laser-induced periodic surface structures (LIPSS); nanofibers
  • nanostructure on the calamistrum in fact reduces adhesion of native spider silk and that this reduced adhesion can be mimicked by artificially structured polymer foils [14]. In order to technically integrate these antiadhesive structures, the structures have to be adapted as typical technical nanofibers differ
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • target nanotubes to Si tips under scanning electron microscopy; and attaching nanotubes to Si tips by carbon deposition. The strong adhesion of carbon deposition produces nanotube tips capable of surviving multiple surface collisions. The ability to image the fine structure of double-stranded DNA
  • electric field. The nanotube tips produced by this method have strong adhesion and mechanical stability. Since the above methods require scanning electron microscopy (SEM) monitoring throughout the transfer process, the process is relatively time-consuming. Hafner et al. [40] proposed a new method to
  • and are of suitable length. This controllable method has great adhesion for CNT probes. The growth of individual CNTs at the tip was achieved when the trigger threshold was controlled in the range of 0.25–0.50 V. The properties and functionality of such tips were verified using samples with high
PDF
Album
Review
Published 03 Nov 2022

Roll-to-roll fabrication of superhydrophobic pads covered with nanofur for the efficient clean-up of oil spills

  • Patrick Weiser,
  • Robin Kietz,
  • Marc Schneider,
  • Matthias Worgull and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2022, 13, 1228–1239, doi:10.3762/bjnano.13.102

Graphical Abstract
  • a significant increase of the contact angle of water droplets. The fractal structure minimizes contact area as well as adhesion forces between surface and water droplet, thereby equipping the surface with self-cleaning properties equivalent to the lotus effect [24]. Additionally, the high increase
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2022

Biomimetic chitosan with biocomposite nanomaterials for bone tissue repair and regeneration

  • Se-Kwon Kim,
  • Sesha Subramanian Murugan,
  • Pandurang Appana Dalavi,
  • Sebanti Gupta,
  • Sukumaran Anil,
  • Gi Hun Seong and
  • Jayachandran Venkatesan

Beilstein J. Nanotechnol. 2022, 13, 1051–1067, doi:10.3762/bjnano.13.92

Graphical Abstract
  • oxide, zinc oxide, carbon nanotubes, graphene oxide, and biosilica was developed to improve bone scaffolds for better bone tissue repair and regeneration [11]. In tissue engineering applications, nanoscale topological characteristics influence cell adhesion, survival, proliferation, and differentiation
  • . The rough surface of the materials at the nanoscale helps cellular peptide adhesion for better stem cell growth and differentiation [12][13]. Nanomaterials have several advantages such as high surface area, increased mechanical strength, and induction of several important genes for bone tissue repair
  • mechanical strength and cell adhesion. Importantly, the developed biocomposites have excellent antimicrobial activity [111]. AgNP-loaded fibrillar collagen–chitosan matrix was used for further biomineralisation using a simulated body fluid (SBF) solution. The developed composites show better mineralisation
PDF
Review
Published 29 Sep 2022

Effects of focused electron beam irradiation parameters on direct nanostructure formation on Ag surfaces

  • Jānis Sniķeris,
  • Vjačeslavs Gerbreders,
  • Andrejs Bulanovs and
  • Ēriks Sļedevskis

Beilstein J. Nanotechnol. 2022, 13, 1004–1010, doi:10.3762/bjnano.13.87

Graphical Abstract
  • to different adhesion coefficients between the surface and hydrocarbons. Results from EDX measurements strongly suggest that metal atoms or ions are capable of moving within carbon–metal nanowires under the influence of EB. High Ag ion mobility under electric fields or EB has also been reported in
PDF
Album
Full Research Paper
Published 22 Sep 2022

Interaction between honeybee mandibles and propolis

  • Leonie Saccardi,
  • Franz Brümmer,
  • Jonas Schiebl,
  • Oliver Schwarz,
  • Alexander Kovalev and
  • Stanislav Gorb

Beilstein J. Nanotechnol. 2022, 13, 958–974, doi:10.3762/bjnano.13.84

Graphical Abstract
  • colony against pathogens. In spite of its stickiness, honeybees are able to handle and manipulate propolis with their mandibles. We wanted to know if beneficial anti-adhesive properties of bee mandibles reduce propolis adhesion. The anatomy of bee mandibles was studied in a (cryo-)scanning electron
  • microscope. Adhesion experiments were performed with propolis on bee mandibles to find out if bee mandibles have anti-adhesive properties that enable bees to handle the sticky material. A scale-like pattern was found on the inside of the mandible. Fresh mandibles were covered with a seemingly fluid substance
  • that was at least partially removed during the washing process. Propolis adhesion on bee mandibles was measured to be 1 J/m2 and was indeed significantly lower compared to five technical materials. Propolis adhesion was higher on mandibles that were washed compared to fresh, unwashed mandibles. Results
PDF
Album
Full Research Paper
Published 14 Sep 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • phenomena of plant surfaces such as the splash behavior of liquids or the adhesion of insects under laboratory conditions [38][39]. In the past, long-chain hydrocarbons as well as native wax extract were recrytallized to mimic the native leaf structures and their associated properties [21][39][40][41][42
  • ranged from 10.8° ± 7.3° to 31.3° ± 21.3° (Table 1). Wheat leaves are not vertically oriented to the plant axis. TAs provide information on droplet adhesion on such inclined surfaces. For wheat leaves, we could not find any comparative values for TAs in the literature. In the context of active ingredient
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

Bioselectivity of silk protein-based materials and their bio-inspired applications

  • Hendrik Bargel,
  • Vanessa T. Trossmann,
  • Christoph Sommer and
  • Thomas Scheibel

Beilstein J. Nanotechnol. 2022, 13, 902–921, doi:10.3762/bjnano.13.81

Graphical Abstract
  • , Universitätsstr. 30, 95440 Bayreuth, Germany 10.3762/bjnano.13.81 Abstract Adhesion to material surfaces is crucial for almost all organisms regarding subsequent biological responses. Mammalian cell attachment to a surrounding biological matrix is essential for maintaining their survival and function concerning
  • tissue formation. Conversely, the adhesion and presence of microbes interferes with important multicellular processes of tissue development. Therefore, tailoring bioselective, biologically active, and multifunctional materials for biomedical applications is a modern focus of biomaterial research
  • on biological processes and surface interactions involved in the bioselective adhesion of mammalian cells and repellence of microbes on protein-based material surfaces. In addition, it highlights the importance of materials made of recombinant spider silk proteins, focussing on the progress regarding
PDF
Album
Review
Published 08 Sep 2022

Temperature and chemical effects on the interfacial energy between a Ga–In–Sn eutectic liquid alloy and nanoscopic asperities

  • Yujin Han,
  • Pierre-Marie Thebault,
  • Corentin Audes,
  • Xuelin Wang,
  • Haiwoong Park,
  • Jian-Zhong Jiang and
  • Arnaud Caron

Beilstein J. Nanotechnol. 2022, 13, 817–827, doi:10.3762/bjnano.13.72

Graphical Abstract
  • has not yet attracted as much attention. Recently, the authors of [12] highlighted the role of the oxide skin on the adhesion strength of gallium-based alloys on various substrates. Specifically, the authors found that the resulting adhesion strength is low when the oxide skin surrounding a liquid
  • drop is not disrupted during application onto a substrate. In contrast, when the oxide skin breaks, new oxide forms at the solid–liquid interface with a substrate, which results in adhesion. Also, the wetting of a liquid Ga–In alloy has been related to the adsorption energy of gallium on three
  • consisted of approaching a cantilever towards the sample surface at varying velocities dZ/dt = 0.1–25 µm/s (see Figure 1). We repeated force spectroscopy measurements at each approach/retraction velocity 15 times. We used the retraction part of the force–distance curves to determine the adhesion force Fad
PDF
Album
Full Research Paper
Published 23 Aug 2022

Hierachical epicuticular wax coverage on leaves of Deschampsia antarctica as a possible adaptation to severe environmental conditions

  • Elena V. Gorb,
  • Iryna A. Kozeretska and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2022, 13, 807–816, doi:10.3762/bjnano.13.71

Graphical Abstract
  • projections. This, in turn, helps to keep an air layer between the wax particles under conditions of reduced water vapor. Moreover, superhydrophobic surfaces in combination with strong air flow can lead to newly formed ice particles being blown off, since the real contact area and, consequently, the adhesion
PDF
Album
Full Research Paper
Published 22 Aug 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • , on which the graphene film would make electrical contact. The B2 PMMA/graphene films were then transferred onto the wafer and patterned by O2 plasma, followed by the sacrificial layer removal. Previous to the passivation, Al2O3 was selectively removed to improve the adhesion of the oxide passivation
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • adhesion strength could reach about 50 N·cm−2 for different kinds of substrates. The stacking nanoflakes formed multiple domains. Most of the domains were quasi-parallel to the substrates, suggesting a correlation between the alignment of nanoflakes and the anisotropic adhesion strength. The adhesion
  • function is quite attractive because this function is versatile even for nanoparticles. Electrodes of sodium-ion batteries can be fabricated by using the Ni–CN–Ni colloids as glue. The contribution to the adhesion strength among 2D coordination polymers was generally considered to be van der Waals forces
  • [147]. However, the adhesion strength varied over time, sometimes reaching values even close to 100 N·cm−2, which is higher than to be expected from van der Waals forces. The non-uniform deposition of Ni–CN–Ni nanosheets caused by Marangoni flow was an important reason for the unstable value of the
PDF
Album
Review
Published 12 Aug 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • cellular behaviours such as cell migration and adhesion and is an important indicator of the physiological state of the cells [28][29]. Thus, stiff substrates do promote migration of prostate cancer cells by altering their morphology, including cellular polarity index, filamentous pseudopods, and surface
  • imaging of the cell membrane. We observed that prostate cancer cells exhibit a strong migration ability by sensing changes in the extracellular environment through actin polymerization and filamentous pseudopods. This is because the role of actin polymerisation in cell adhesion structure formation
  • deformation [38][39]) the energy dissipation was mainly caused by cell adhesion, which was a certain separation between the approach and retraction curves (Figure 5c). The results showed a negative correlation between viscosity values and substrate stiffness in PC-3 cells: the higher the substrate stiffness
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Ethosomal (−)-epigallocatechin-3-gallate as a novel approach to enhance antioxidant, anti-collagenase and anti-elastase effects

  • Çiğdem Yücel,
  • Gökçe Şeker Karatoprak,
  • Sena Yalçıntaş and
  • Tuğba Eren Böncü

Beilstein J. Nanotechnol. 2022, 13, 491–502, doi:10.3762/bjnano.13.41

Graphical Abstract
  • cytotoxicity experiments, the MTT colorimetric assay was used [24]. Suspensions of L929 cells (100 μL, 2.5 × 104 cells/well) were seeded onto 96-well culture plates which were kept at 37 °C for 24 h for cell adhesion [43]. The cells were treated with different EGCG solutions (31.25–1000 µg/mL) and EGCG-loaded
PDF
Album
Full Research Paper
Published 31 May 2022
Other Beilstein-Institut Open Science Activities