Search results

Search for "biomaterials" in Full Text gives 108 result(s) in Beilstein Journal of Nanotechnology.

High-throughput micro-nanostructuring by microdroplet inkjet printing

  • Hendrikje R. Neumann and
  • Christine Selhuber-Unkel

Beilstein J. Nanotechnol. 2018, 9, 2372–2380, doi:10.3762/bjnano.9.222

Graphical Abstract
  • densities is highly important in many fields, ranging from nano-optics to biosensor technologies and biomaterials. A well-established method to fabricate quasi-hexagonal patterns of metal nanoparticles is block copolymer micelle nanolithography, which relies on the self-assembly of metal-loaded micelles on
  • : biofunctional surfaces; inkjet printing; microstructures; nanolithography; nanoparticles; Introduction Many applications require well-organized micro- and nanoscale patterning of metallic nanoparticles. Examples include high-performance optics [1], multimodal waveguides [2], biosensors [3] and biomaterials [4
PDF
Album
Full Research Paper
Published 04 Sep 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • surgeries is envisaged to increase rapidly either as the people get older or due to car accidents [8][9][10]. All bone substitute materials must be bioactive and behave similarly to healthy bones [11]. There is a steadily increasing interest in natural, semi-synthetic and synthetic polymeric biomaterials as
PDF
Album
Full Research Paper
Published 13 Jul 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • . Acknowledgements This work was supported by the Pre-research Project of Sichuan University (No. JTYY0030105515006). The authors are very much grateful to the National Engineering Research Center for Biomaterials, Sichuan University, for the assistance with the microscopy work.
PDF
Album
Full Research Paper
Published 14 Jun 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • Reika Makita Tsukasa Akasaka Seiichi Tamagawa Yasuhiro Yoshida Saori Miyata Hirofumi Miyaji Tsutomu Sugaya Department of Periodontology and Endodontology, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan Department of Biomaterials and Bioengineering, Faculty of
  • of the surface of biomaterials. Surface topographical patterns significantly affect cell adhesion, spreading, morphology, proliferation, and differentiation [1][2][3][4][5]. Surfaces with specific micro/nanopatterns have been developed in order to reduce platelet response [6], to regulate stem cell
  • behavior of cells on surfaces with different patterns can be altered by designing different surface patterns, and by the selection of different types of dental- and bio-materials. In the dental field, there is a huge need to develop surfaces with different patterns, either using biomaterials composed of
PDF
Album
Full Research Paper
Published 11 Jun 2018

Optical near-field mapping of plasmonic nanostructures prepared by nanosphere lithography

  • Gitanjali Kolhatkar,
  • Alexandre Merlen,
  • Jiawei Zhang,
  • Chahinez Dab,
  • Gregory Q. Wallace,
  • François Lagugné-Labarthet and
  • Andreas Ruediger

Beilstein J. Nanotechnol. 2018, 9, 1536–1543, doi:10.3762/bjnano.9.144

Graphical Abstract
  • Department and Centre for Materials and Biomaterials, 1151 Richmond Street, London, ON, N6A5B7, Canada 10.3762/bjnano.9.144 Abstract We introduce a simple, fast, efficient and non-destructive method to study the optical near-field properties of plasmonic nanotriangles prepared by nanosphere lithography
PDF
Album
Full Research Paper
Published 23 May 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • promising for uses in surface coatings, sensors and metallic biomaterials, however, to date little attention has been paid to this coordination electrodeposition method. A feature of the chitosan electrodeposition method is that it enables a controllable means to assemble nanoparticles (e.g., silver
PDF
Album
Full Research Paper
Published 17 Apr 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • -cytotoxic. This makes FLG an ideal material to incorporate into dental polymers to increase their strength and durability. It is well known that graphene has high mechanical strength and has been shown to enhance the mechanical, physical and chemical properties of biomaterials. However, for commercial
PDF
Album
Full Research Paper
Published 05 Mar 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • . Keywords: antibacterial agents; BN/Ag hybrid nanomaterials; catalysts; chemical vapour deposition; nanomaterials; Introduction New hybrid nanomaterials are the key components of the next generation advanced catalysts and biomaterials. Novel and unique properties can be obtained while employing synergetic
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • [36] and drug delivery systems [37]. For tissue regeneration, the mostly studied biomaterials are collagen and chitin, which are, respectively, protein-based and glucose-based biopolymers [38][39]. When denatured, collagen and chitin can be transformed into gelatin and chitosan, respectively, which
  • packed dsDNA molecules in sperm heads [74][75] and in the dinoflagellate and bacterial chromosomes [76][77][78]. Tissue-mimectic liquid-crystalline biomaterials 3D self-organization and self-assembly of biocompatible LC structures satisfy essential characteristics required for tissue engineering
  • composites and materials [84]. As shown in Table 1, the potential clinical applications of LC biomaterials include the regeneration of (1) acellular tissue such as bones, teeth (dentine and enamel), and cornea, (2) cell-ECM complexes such as spinal cords, tendons, and skin layers, and (3) cellular tissue
PDF
Album
Review
Published 18 Jan 2018

Vapor-based polymers: from films to nanostructures

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 2219–2220, doi:10.3762/bjnano.8.221

Graphical Abstract
  • poly(p-xylylenes) via the Gorham process, has been of industrial use in the fabrication of isolating or protective coatings in electronics and biomaterials for many years [1][2]. More recently, vapor deposition polymerization has been extended to a broad variety of reactive polymers [3], additionally
  • of sensors or biomaterials. A general overview of the different techniques used to create structures can be found in the review by H.-Y. Chen [15]. In our own review, on the other hand, we focus on techniques to directly create structures in situ during the vapor deposition [16]. In summary, this
PDF
Editorial
Published 24 Oct 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • 10.3762/bjnano.8.157 Abstract The combination of different components such as carbon nanostructures and organic gelators into composite nanostructured hydrogels is attracting wide interest for a variety of applications, including sensing and biomaterials. In particular, both supramolecular hydrogels that
  • materials. Peptide self-assembled hydrogels are inherently biocompatible and biodegradable and thus are promising biomaterials for cell culture, regenerative medicine, tissue engineering, and drug delivery applications [22]. The identification of self-assembling peptides that are as short as possible is
  • ][31] and bearing unnatural D-amino acids [32][33] are attractive biomaterials that may display higher durability relative to traditional peptide counterparts, in addition to better biocompatibility and the possibility to incorporate bioactive motifs relative to non-peptide hydrogels. Therefore, in the
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

A biofunctionalizable ink platform composed of catechol-modified chitosan and reduced graphene oxide/platinum nanocomposite

  • Peter Sobolewski,
  • Agata Goszczyńska,
  • Małgorzata Aleksandrzak,
  • Karolina Urbaś,
  • Joanna Derkowska,
  • Agnieszka Bartoszewska,
  • Jacek Podolski,
  • Ewa Mijowska and
  • Mirosława El Fray

Beilstein J. Nanotechnol. 2017, 8, 1508–1514, doi:10.3762/bjnano.8.151

Graphical Abstract
  • Peter Sobolewski Agata Goszczynska Malgorzata Aleksandrzak Karolina Urbas Joanna Derkowska Agnieszka Bartoszewska Jacek Podolski Ewa Mijowska Miroslawa El Fray Division of Biomaterials and Microbiological Technologies, Faculty of Chemical Technology and Engineering, West Pomeranian University of
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2017

Characterization of ferrite nanoparticles for preparation of biocomposites

  • Urszula Klekotka,
  • Magdalena Rogowska,
  • Dariusz Satuła and
  • Beata Kalska-Szostko

Beilstein J. Nanotechnol. 2017, 8, 1257–1265, doi:10.3762/bjnano.8.127

Graphical Abstract
  • .). Functionalization can ensure connection of the nanoparticle surface self-assembled layers with free active bonds [8]. The integration of nanostructures with biomolecules leads to the fabrication of a novel hybrid system that couples recognition or catalytic properties of biomaterials with attractive electronic
PDF
Album
Full Research Paper
Published 13 Jun 2017

Metal oxide nanostructures: preparation, characterization and functional applications as chemical sensors

  • Dario Zappa,
  • Angela Bertuna,
  • Elisabetta Comini,
  • Navpreet Kaur,
  • Nicola Poli,
  • Veronica Sberveglieri and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2017, 8, 1205–1217, doi:10.3762/bjnano.8.122

Graphical Abstract
  • crystal growth and in particular the preparation of nanostructures because it can be used for different materials such as metal oxides, carbon nanostructures and biomaterials [55]. In this work, we applied this technique in order to obtain niobium oxide nanostructures. We started from the method explained
PDF
Album
Full Research Paper
Published 06 Jun 2017

Atomic structure of Mg-based metallic glass investigated with neutron diffraction, reverse Monte Carlo modeling and electron microscopy

  • Rafał Babilas,
  • Dariusz Łukowiec and
  • Laszlo Temleitner

Beilstein J. Nanotechnol. 2017, 8, 1174–1182, doi:10.3762/bjnano.8.119

Graphical Abstract
  • Rafal Babilas Dariusz Lukowiec Laszlo Temleitner Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a St., 44-100 Gliwice, Poland Institute for Solid State Physics and Optics, Wigner Research Centre for Physics, P.O. Box 49, H-1525 Budapest
PDF
Album
Full Research Paper
Published 31 May 2017

Recombinant DNA technology and click chemistry: a powerful combination for generating a hybrid elastin-like-statherin hydrogel to control calcium phosphate mineralization

  • Mohamed Hamed Misbah,
  • Mercedes Santos,
  • Luis Quintanilla,
  • Christina Günter,
  • Matilde Alonso,
  • Andreas Taubert and
  • José Carlos Rodríguez-Cabello

Beilstein J. Nanotechnol. 2017, 8, 772–783, doi:10.3762/bjnano.8.80

Graphical Abstract
  • biomaterials. Keywords: calcium phosphate; elastin-like recombinamers; hydroxyapatite; mineralization; SNA15; Introduction Combination of the specific properties of two materials is often a key to generating a new material, whose properties are superior to those of its individual components, with improved
  • ) and high yields [22][23]. Moreover, it provides the possibility to achieve structural complexity by using various bio-inspired materials with distinct mechanical, chemical or biological properties. Biomaterials that can be readily controlled using this approach include the so-called elastin-like
PDF
Album
Supp Info
Full Research Paper
Published 04 Apr 2017

Template-controlled piezoactivity of ZnO thin films grown via a bioinspired approach

  • Nina J. Blumenstein,
  • Fabian Streb,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Zaklina Burghard and
  • Joachim Bill

Beilstein J. Nanotechnol. 2017, 8, 296–303, doi:10.3762/bjnano.8.32

Graphical Abstract
  • 1, Eggenstein-Leopoldshafen, D-76344, Germany Institute of Applied Physics and Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, Karlsruhe, D-76131, Germany 10.3762/bjnano.8.32 Abstract Biomaterials are used as model systems for the deposition
PDF
Album
Full Research Paper
Published 30 Jan 2017

Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

  • Andreea Laura Chibac,
  • Tinca Buruiana,
  • Violeta Melinte and
  • Emil C. Buruiana

Beilstein J. Nanotechnol. 2017, 8, 272–286, doi:10.3762/bjnano.8.30

Graphical Abstract
  • , Li-ion batteries, sensors, photodynamic cancer therapy or in biomaterials [1][2][3][4][5][6][7]. Since 1972, when Fujishima and Honda published their seminal work [8], much work has been focused on investigating the photocatalytic properties of TiO2 [9]. Titanium dioxide catalysts proved to be better
PDF
Album
Full Research Paper
Published 27 Jan 2017

Graphene–polymer coating for the realization of strain sensors

  • Carmela Bonavolontà,
  • Carla Aramo,
  • Massimo Valentino,
  • Giampiero Pepe,
  • Sergio De Nicola,
  • Gianfranco Carotenuto,
  • Angela Longo,
  • Mariano Palomba,
  • Simone Boccardi and
  • Carosena Meola

Beilstein J. Nanotechnol. 2017, 8, 21–27, doi:10.3762/bjnano.8.3

Graphical Abstract
  • Nucleare, sezione di Napoli, Napoli, Italy CNR-SPIN Institute for Superconductors, Oxides and other Innovative materials and Devices, Via Cintia, 80134 Napoli, Italy CNR-IPCB, Institute for Polymers, Composites and Biomaterials, Viale Kennedy, 54 - Mostra d’Oltremare Pad. 20, 80125 Napoli, Italy
PDF
Album
Full Research Paper
Published 03 Jan 2017

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • potential interesting future studies. Keywords: fabrication methods; materials selection; nano- and micro-topography; vascular endothelial cells; vascular smooth muscle cells; Introduction Cells adhering to biomaterials are influenced by the surface topography, the surface chemistry and the mechanical
  • the development of alternative synthetic substrates [4][86][87][98][99][100]. Polymeric synthetic materials are the broadest and most diverse class of biomaterials available for cell research [89]. Some of these materials enable a good control of their surface chemistry, mechanical properties and
  • geometry. Moreover, their non-cytotoxicity, their ease to use with many fabrication techniques and often the simplicity of their synthesis makes them to be widely used within the field of biomaterials [4][5][55][85][99][100][101][102]. Examples of the most representative synthetic polymeric materials used
PDF
Album
Review
Published 08 Nov 2016

Manufacturing and investigation of physical properties of polyacrylonitrile nanofibre composites with SiO2, TiO2 and Bi2O3 nanoparticles

  • Tomasz Tański,
  • Wiktor Matysiak and
  • Barbara Hajduk

Beilstein J. Nanotechnol. 2016, 7, 1141–1155, doi:10.3762/bjnano.7.106

Graphical Abstract
  • Tomasz Tanski Wiktor Matysiak Barbara Hajduk Department of Materials Processing Technology, Management and Technology in Materials, Institute of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a Str., 44-100 Gliwice, Poland Center for Nanotechnology
PDF
Album
Full Research Paper
Published 05 Aug 2016

Multiwalled carbon nanotube hybrids as MRI contrast agents

  • Nikodem Kuźnik and
  • Mateusz M. Tomczyk

Beilstein J. Nanotechnol. 2016, 7, 1086–1103, doi:10.3762/bjnano.7.102

Graphical Abstract
  • , the unique combination of features that is found in nanoparticles has opened up a new era of biomaterials. These offer several advantages of great importance to biomedical applications, e.g., the possibility of appropriate size and shape designed for the desired target, modulation of their
PDF
Album
Supp Info
Review
Published 27 Jul 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • Institute of Biomaterials and Biomolecular Systems, Department of Biophysics, University of Stuttgart, Pfaffenwaldring 57, 70550 Stuttgart, Germany Fraunhofer Institute for Interfacial Engineering and Biotechnology, Department of Interfacial Engineering and Materials Science, Nobelstraße 12, 70569 Stuttgart
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • Claudia Koch Fabian J. Eber Carlos Azucena Alexander Forste Stefan Walheim Thomas Schimmel Alexander M. Bittner Holger Jeske Hartmut Gliemann Sabine Eiben Fania C. Geiger Christina Wege Institute of Biomaterials and Biomolecular Systems, Department of Molecular Biology and Plant Virology
  • , spread, or interactions with host cells and tissues, viruses and VLPs have been regarded as a new class of biomaterials with an immense potential for applications as templates, building blocks and “smart” tools in chemical synthesis, medicine and nanotechnology since the turn of the century [1][2][3][4
PDF
Album
Review
Published 25 Apr 2016

3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

  • Eduardo Guzmán,
  • Armando Maestro,
  • Sara Llamas,
  • Jesús Álvarez-Rodríguez,
  • Francisco Ortega,
  • Ángel Maroto-Valiente and
  • Ramón G. Rubio

Beilstein J. Nanotechnol. 2016, 7, 197–208, doi:10.3762/bjnano.7.18

Graphical Abstract
  • application in several fields, including optics, electronics, coatings and biomaterials (drug delivery and tissue engineering). In order to create the aforementioned materials, the development of new bottom-up techniques, which allow one to control the properties and structure of the materials at the sub
PDF
Album
Full Research Paper
Published 05 Feb 2016
Other Beilstein-Institut Open Science Activities