Search results

Search for "crystal structure" in Full Text gives 322 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • charges and, hence, increase photocatalytic activity, metallic bismuth can function as a direct plasmonic photocatalyst (similar to Au and Ag) or a co-catalyst [77]. Also, the unique layered crystal structure of Aurivillius-type bismuth oxide-based semiconductors allows for the induction of an internal
  • /and surface defects are created without destroying the crystal structure (though it might be distorted), effectively separating photogenerated carriers. Doping with metallic (Mg, Ag, Ni, Fe, Li, Co, and Ni) and non-metallic ions (F, C, N, and O), can introduce an intraband close to the conduction band
PDF
Album
Review
Published 03 Mar 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • high crystallinity of the synthesized NPs and the diffraction rings which indicate the polycrystalline nature of the AgNPs have been indexed to the (111), (200), (220) and (311) planes and correspond only to the face-centered cubic (fcc) crystal structure of metallic silver (JCPDS, No. 04-0783) (Figure
PDF
Album
Full Research Paper
Published 12 Jan 2023

Upper critical magnetic field in NbRe and NbReN micrometric strips

  • Zahra Makhdoumi Kakhaki,
  • Antonio Leo,
  • Federico Chianese,
  • Loredana Parlato,
  • Giovanni Piero Pepe,
  • Angela Nigro,
  • Carla Cirillo and
  • Carmine Attanasio

Beilstein J. Nanotechnol. 2023, 14, 45–51, doi:10.3762/bjnano.14.5

Graphical Abstract
  • more direct access to the order parameter in these systems. Regarding the aforementioned purpose, while in the case of NbRe it is now even more evident that films with larger crystallites are mandatory [7][8][12], detailed analyses of the NbReN crystal structure are still lacking and need to be
PDF
Album
Full Research Paper
Published 05 Jan 2023

The influence of structure and local structural defects on the magnetic properties of cobalt nanofilms

  • Alexander Vakhrushev,
  • Aleksey Fedotov,
  • Olesya Severyukhina and
  • Anatolie Sidorenko

Beilstein J. Nanotechnol. 2023, 14, 23–33, doi:10.3762/bjnano.14.3

Graphical Abstract
  • . Morphological analysis enables the identification of local defects in the crystal structure, which form different scale aggregates that can further serve as causes of deterioration of the target material functional characteristics [30][31]. Comprehensive studies in this area not only allow to establish the
  • internal energy and by the symmetry or asymmetry of the crystal structure of ferromagnets. The dipole–dipole interaction does not make a significant contribution to the anisotropy energy and its value is insignificant. Only in a number of rare-earth metals the contribution of the dipole–dipole interaction
  • length compared to the same value for the spin temperature. For an interval of 7–100 ps, the magnetization modulus value is set near the mean value, which is 0.7 e·Å−1·ps−1 for the case of an ideal crystal structure and 0.47 e·Å−1·ps−1 for the real structure variant, where e is the notation of the
PDF
Album
Full Research Paper
Published 04 Jan 2023

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • from card number 00-04-0783 (Joint Committee on Powder Diffraction Standards, JCPDS). This pattern represents the peaks corresponding to the crystallographic planes (111), (200), (220), and (331) of the Cu-type face-centered cubic crystal structure of metallic Ag. The pattern for AgCl was taken from
  • letter number 56540 (Inorganic Crystal Structure Database, ICSD). This pattern corresponds to the crystallographic planes (111), (200), (220), (311), and (222) of the NaCl-type face-centered cubic crystal structure. According to the results, the pineapple peel extract (PPeel extract) is amorphous (i.e
PDF
Album
Full Research Paper
Published 13 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • symmetric line with an isotropic g-factor of 2.142, which indicates isolated Ni3+ ions in the crystal structure [63]. The low concentration of Ni3+ impurities (35–43 ppm) presented in Figure 5 is almost independent of the synthesis temperature. The exception is the sample heated at 750 °C with the lowest
PDF
Album
Full Research Paper
Published 07 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • surfactant-free hydrothermal technique [55]. According to the results, the pH value has a significant impact on shape, surface area, particle size, and V–O bond length. The grain size was reduced when the pH value was raised, and the crystal structure became more closely stacked. Under visible-light
  • and deposition and doping of metals and non-metallic elements are the most common doping methods. Metal ions modify the crystal structure of the Bi-based semiconductor photocatalysts or induce defects. Also, the photocatalytic properties may be altered by doping or deposition of metallic components
PDF
Album
Review
Published 11 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • reagents used were of analytic grade, purchased from Sigma-Aldrich Chemicals Company, and directly used without further purification. Morphology, elemental analysis, and crystal structure Morphology and elemental composition of the as-prepared products were characterized by scanning electron microscopy
  • ). Detailed analysis of the SAED patterns, acquired along the [−1−20] zone axis, using CrysTBox software [22][23] demonstrates that the roll-like nanostructure is crystalline. The one-dimensional nanostructure has the trigonal crystal structure of bulk Te, growing in the [001] orientation (indicated by a
  • the anisotropy of the Te crystal structure [20][21]. However, a fast Fourier transform (FFT) analysis of different areas of the HRTEM images (see Figure 3a) shows that the nanostructures are polycrystalline, with well-oriented large grains and rotated small grains at the edges. Small amorphous areas
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

Rapid fabrication of MgO@g-C3N4 heterojunctions for photocatalytic nitric oxide removal

  • Minh-Thuan Pham,
  • Duyen P. H. Tran,
  • Xuan-Thanh Bui and
  • Sheng-Jie You

Beilstein J. Nanotechnol. 2022, 13, 1141–1154, doi:10.3762/bjnano.13.96

Graphical Abstract
  • matches with the typical breathing mode of triazine. After adding MgO, the distinct peaks of all MgO@g-C3N4 heterojunctions are similar to that of pure g-C3N4, indicating that the crystal structure of g-C3N4 remains unchanged. In addition, the small peak at 419 cm−1 proves the presence of MgO in MgO@g
PDF
Album
Supp Info
Full Research Paper
Published 18 Oct 2022

Spindle-like MIL101(Fe) decorated with Bi2O3 nanoparticles for enhanced degradation of chlortetracycline under visible-light irradiation

  • Chen-chen Hao,
  • Fang-yan Chen,
  • Kun Bian,
  • Yu-bin Tang and
  • Wei-long Shi

Beilstein J. Nanotechnol. 2022, 13, 1038–1050, doi:10.3762/bjnano.13.91

Graphical Abstract
  • File 1, Figure S2), no obvious change was found, which suggests that the crystal structure of BOM-20 remained unchanged after the photocatalytic reaction. This result further confirms the stability of the BOM-20 heterojunction as a photocatalyst. To explore the CTC degradation pathway with the
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • selection of Cu and Co is their similar crystal structure to that of silver, besides their catalytic oxidizing ability. Moreover, to date, there are no reports on the evaluation of the electrochemical ORR activity in alkaline media employing AgCuCo oxides supported on rGO. To identify the phase formation
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Influence of water contamination on the sputtering of silicon with low-energy argon ions investigated by molecular dynamics simulations

  • Grégoire R. N. Defoort-Levkov,
  • Alan Bahm and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2022, 13, 986–1003, doi:10.3762/bjnano.13.86

Graphical Abstract
  • al. [37] can be used for a whole sample. However, in the current study the information on the transition of the crystal structure between different regions cannot be obtained. For these reasons, we developed our methodology (i.e., a bond-centric analysis based on the definition of regions
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2022

Efficient liquid exfoliation of KP15 nanowires aided by Hansen's empirical theory

  • Zhaoxuan Huang,
  • Zhikang Jiang,
  • Nan Tian,
  • Disheng Yao,
  • Fei Long,
  • Yanhan Yang and
  • Danmin Liu

Beilstein J. Nanotechnol. 2022, 13, 788–795, doi:10.3762/bjnano.13.69

Graphical Abstract
  • nanoparticles as anode materials to promote the rapid diffusion and electron transfer of lithium, and Rongjun Zhao prepared n-butanol gas sensors with one-dimensional In2O3 nanorods [1][2]. Different from 2D materials, 1D materials generally have a chain-like crystal structure and are easily exfoliated due to a
PDF
Album
Supp Info
Full Research Paper
Published 17 Aug 2022

Recent advances in nanoarchitectures of monocrystalline coordination polymers through confined assembly

  • Lingling Xia,
  • Qinyue Wang and
  • Ming Hu

Beilstein J. Nanotechnol. 2022, 13, 763–777, doi:10.3762/bjnano.13.67

Graphical Abstract
  • environments, new opportunities arise for changing the properties of materials. Assembling ionic/molecular building blocks in a liquid that contains impurities generally does not change the intrinsic crystal structure of the obtained single crystals. However, the crystallization kinetics can be affected, which
  • . Such an enhancement could also be found in the case of electrodes for supercapacitors. The carbons derived from the inverse opal single crystals showed excellent cycling stability [120]. When the networks do not have lattice similarity with the grown monocrystalline coordination polymers, the crystal
  • structure or orientation of the monocrystalline coordination polymers are hardly affected. However, when solids have a similar lattice structure with the grown coordination polymers, epitaxy happens to guide the growth of the coordination polymers. The crystallographic orientation of the grown coordination
PDF
Album
Review
Published 12 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • , suggesting that the crystal structure of the sample is maintained during the cyclic photocatalysis. As shown in Figure 8c, FE-SEM images of the 70%−Bi2WO6/TiO2-NT nanocomposite after photocatalysis still present the cellulose-derived three-dimensionally porous network structure, and the Bi2WO6 nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking

  • Kendra Ramirez-Acosta,
  • Ivan A. Rosales-Fuerte,
  • J. Eduardo Perez-Sanchez,
  • Alfredo Nuñez-Rivera,
  • Josue Juarez and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2022, 13, 699–711, doi:10.3762/bjnano.13.62

Graphical Abstract
  • crystal structure of SARS-CoV-2 RBD spike protein (PDB ID: 6VYB) was selected for this study. The molecules bound to the protein receptor molecule were removed. The RBD spike protein was prepared using AutoDock Tools to add polar hydrogen atoms, Kollman charges, and to remove water molecules. The active
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2022

Sodium doping in brookite TiO2 enhances its photocatalytic activity

  • Boxiang Zhuang,
  • Honglong Shi,
  • Honglei Zhang and
  • Zeqian Zhang

Beilstein J. Nanotechnol. 2022, 13, 599–609, doi:10.3762/bjnano.13.52

Graphical Abstract
  • , oxalic acid, and sodium hydroxide. It exhibits excellent photocatalytic activity in methylene blue solution (MB), which is about three times higher than that of the quasi-spherical brookite TiO2. The crystal structure of NaxTi1−xO2 was determined by the Rietveld refinement method and verified by the
  • , the reaction rate constant in this report was about three times higher than that of the quasi-spherical brookite TiO2 (k = 0.0206) [22]. The excellent photocatalytic activity can be correlated with the crystal structure, micromorphology, and chemical composition [23][24][25]. The bandgap is useful to
  • bandgap values of these four samples. Structural phase diagram, chemical composition, and morphology The crystal structure of samples calcinated at 300–900 °C was characterized by powder X-ray diffraction (XRD), as shown in Figure 3a. The sample calcinated at 300 °C is a mixture of brookite (B) and
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

A new method for obtaining the magnetic shape anisotropy directly from electron tomography images

  • Cristian Radu,
  • Ioana D. Vlaicu and
  • Andrei C. Kuncser

Beilstein J. Nanotechnol. 2022, 13, 590–598, doi:10.3762/bjnano.13.51

Graphical Abstract
  • MNPs with a diameter of roughly 47 nm and with the Fe3O4 crystal structure. In addition to the XRD, electron tomography showed that the size of MNPs is indeed in the 40 nm range, but they have a slightly elongated morphology (Figure 4). For a quantitative description of the shape and extraction of the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • , Raman, and photoluminescence spectroscopy and microscopy. The SHG intensity is significantly reduced when the thickness of the MoSe2 flake increases, which indicates that the crystal structure of the MoSe2 flake is the hexagonal 2H phase. The Raman enhancement of CuPc on MoSe2 obtained with azimuthal
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

The role of sulfonate groups and hydrogen bonding in the proton conductivity of two coordination networks

  • Ali Javed,
  • Felix Steinke,
  • Stephan Wöhlbrandt,
  • Hana Bunzen,
  • Norbert Stock and
  • Michael Tiemann

Beilstein J. Nanotechnol. 2022, 13, 437–443, doi:10.3762/bjnano.13.36

Graphical Abstract
  • a clearly higher (though altogether low) proton conductivity than Pb-MOF (by two orders of magnitude), which can be explained by said differences in crystal structure. In Mg-CP the sulfonate group does not coordinate to Mg2+ but is available for being part of an extended hydrogen bonding network
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2022

Interfacial nanoarchitectonics for ZIF-8 membranes with enhanced gas separation

  • Season S. Chen,
  • Zhen-Jie Yang,
  • Chia-Hao Chang,
  • Hoong-Uei Koh,
  • Sameerah I. Al-Saeedi,
  • Kuo-Lun Tung and
  • Kevin C.-W. Wu

Beilstein J. Nanotechnol. 2022, 13, 313–324, doi:10.3762/bjnano.13.26

Graphical Abstract
  • is 3.4 Å, which is deemed ideal for CO2 separation since the kinetic diameters of CO2, N2, and CH4 are 3.3 Å, 3.6 Å, and 3.8 Å, respectively [33][34]. The performance of MOF-based membrane separation highly depends on the microstructure and crystal structure of the selective layer, while the
PDF
Album
Supp Info
Full Research Paper
Published 22 Mar 2022

The effect of metal surface nanomorphology on the output performance of a TENG

  • Yiru Wang,
  • Xin Zhao,
  • Yang Liu and
  • Wenjun Zhou

Beilstein J. Nanotechnol. 2022, 13, 298–312, doi:10.3762/bjnano.13.25

Graphical Abstract
  • was measured using an oscilloscope DS1102E (produced by Rigol). The short-circuit current was tested using an electrochemical workstation (CH, model CHI660E). The crystal structure of the samples was analyzed using a Bruker D8 Advance X-ray diffractometer. A scanning electron microscope (Coxem, model
PDF
Album
Full Research Paper
Published 15 Mar 2022

Surfactant-free syntheses and pair distribution function analysis of osmium nanoparticles

  • Mikkel Juelsholt,
  • Jonathan Quinson,
  • Emil T. S. Kjær,
  • Baiyu Wang,
  • Rebecca Pittkowski,
  • Susan R. Cooper,
  • Tiffany L. Kinnibrugh,
  • Søren B. Simonsen,
  • Luise Theil Kuhn,
  • María Escudero-Escribano and
  • Kirsten M. Ø. Jensen

Beilstein J. Nanotechnol. 2022, 13, 230–235, doi:10.3762/bjnano.13.17

Graphical Abstract
  • reports on the formation mechanism involving chain-like structures made for the synthesis of Pt NPs [33]. Conclusion In conclusion, Os NPs with a hcp crystal structure and a size of approx. 1–2 nm are synthesized in methanol, ethanol, and water mixtures of OsCl3 or H2OsCl6 precursors, without the need for
PDF
Album
Supp Info
Letter
Published 16 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • stability, toxicity, and ultimately the fate of TiO2 nps [36]. Thus, there is a need to meticulously characterize the nanomaterial properties, emphasizing particle size, crystal structure, and specific surface area, for a reliable prediction of the toxicological behavior of TiO2 nanomaterials. A number of
  • considered as a valuable antimicrobial agent due to its photocatalytic activity and self-cleaning properties. Several factors might affect the physicochemical properties of TiO2 nps. Crystal structure and shape are the most critical factors responsible for their antimicrobial property [76]. TiO2 has
PDF
Album
Review
Published 14 Feb 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • , surface engineering, heterojunction construction, co-catalyst, which will be thoroughly outlined in this review. Structure and bandgap SnO2 has a crystal structure similar to that of rutile TiO2 [41][42]. The unit cell parameters of rutile SnO2 are a = b = 0.47374 nm and c = 0.31864 nm [43]. In one unit
  • predominantly point defects, that is, defects associated with one lattice point, such as cation or oxygen ion vacancies. OVs determine the physical and chemical properties of metal oxides. Figure 4a shows the natural crystal structure of SnO2 synthesized by vapor transport [48]. The (110) plane of rutile SnO2
PDF
Album
Review
Published 21 Jan 2022
Other Beilstein-Institut Open Science Activities