Search results

Search for "electrode" in Full Text gives 578 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Induced electric conductivity in organic polymers

  • Konstantin Y. Arutyunov,
  • Anatoli S. Gurski,
  • Vladimir V. Artemov,
  • Alexander L. Vasiliev,
  • Azat R. Yusupov,
  • Danfis D. Karamov and
  • Alexei N. Lachinov

Beilstein J. Nanotechnol. 2022, 13, 1551–1557, doi:10.3762/bjnano.13.128

Graphical Abstract
  • characteristics of each lead electrode separately. To measure differential characteristics dI/dV(V), modulation technique and phase-sensitive lock-in detection were used. To suppress the negative effect of stray electromagnetic pickups, a multistage RLC filter system was used [17]. While R(T) measurements at
  • side view microphotographs made by high-resolution transmission electron microscopy occasionally reveal some macroscopic features such as lead electrode shortcuts through the polymer film (Figure 2c). These defects are episodic, and their character does not resemble the ‘melting through’ of the PDP
PDF
Album
Full Research Paper
Published 19 Dec 2022

Photoelectrochemical water oxidation over TiO2 nanotubes modified with MoS2 and g-C3N4

  • Phuong Hoang Nguyen,
  • Thi Minh Cao,
  • Tho Truong Nguyen,
  • Hien Duy Tong and
  • Viet Van Pham

Beilstein J. Nanotechnol. 2022, 13, 1541–1550, doi:10.3762/bjnano.13.127

Graphical Abstract
  • , the electrode material must be extremely durable and nearly chemically inert to be able to withstand highly acidic or basic environments. Therefore, noble metals such as Pt, Pd, Au and Ag with suitable chemical properties, such as inertness, good resistance against corrosion and good electrical
  • conductivity have been widely used in water splitting reactions [10][11]. However, noble metals are still rare and expensive materials, and their application as electrode materials is considered to be not optimal [10]. Therefore, the study of a materials with high-performance in PEC water splitting, which
  • solution. Next, 0.2 mL of either of these solutions was used to coat the surface of TNAs via spin coating. The samples were denoted as MoS2/TNAs and g-C3N4/TNAs. Then, the samples were annealed in nitrogen gas at 60 °C for 12 h to obtain a stable electrode for the investigation processes. Characterization
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2022

Non-stoichiometric magnetite as catalyst for the photocatalytic degradation of phenol and 2,6-dibromo-4-methylphenol – a new approach in water treatment

  • Joanna Kisała,
  • Anna Tomaszewska and
  • Przemysław Kolek

Beilstein J. Nanotechnol. 2022, 13, 1531–1540, doi:10.3762/bjnano.13.126

Graphical Abstract
  • 1 × 10−4 to 1 × 10−2 mol·L−1 were used to quantify PhOH and DBMP. The concentration of dissolved bromide ions was determined potentiometrically with a bromide ion-selective electrode (EBr-01, Hydromet, Poland) with a silver chloride electrode (RL-100, Hydromet, Poland) as a reference electrode and a
PDF
Album
Supp Info
Full Research Paper
Published 15 Dec 2022

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • cyclic voltammograms show that incorporating TiO2 with the MWCNTs leads to a decrease in the electrical double layer, thereby facilitating the electron transfer rate in the TiO2@MWCNTs electrode. Moreover, the current density of the photoelectrochemical electrode formed by TiO2@MWCNTs under solar
  • irradiation is significantly higher than that prepared by TiO2 (vs Ag/AgCl). The low charge capacity of the TiO2@MWCNTs electrode–electrolyte interface hinders the recombination of the photogenerated electrons and holes, which contributes to the enhancement of the solar-to-hydrogen (STH) conversion efficiency
  • . The average STH conversion efficiency of the TiO2@MWCNTs electrode under solar exposure from 6 AM to 5 PM is 11.1%, 8.88 times higher than that of a TiO2 electrode. The findings suggested TiO2@MWCNTs is a feasible nanomaterial to fabricate the photoanode using photoelectrochemical water splitting
PDF
Album
Full Research Paper
Published 14 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • lithium cells in 1979 by researchers from Oxford University [1]. The cell consisted of LCO, which was used as the cathode material, and metallic lithium, which was used as the anode material. In 1985, it was proposed to replace the Li metal in the negative electrode with the carbonaceous material graphite
PDF
Album
Full Research Paper
Published 07 Dec 2022

Rapid and sensitive detection of box turtles using an electrochemical DNA biosensor based on a gold/graphene nanocomposite

  • Abu Hashem,
  • M. A. Motalib Hossain,
  • Ab Rahman Marlinda,
  • Mohammad Al Mamun,
  • Khanom Simarani and
  • Mohd Rafie Johan

Beilstein J. Nanotechnol. 2022, 13, 1458–1472, doi:10.3762/bjnano.13.120

Graphical Abstract
  • probe using bioinformatics tools, and it was also validated in wet-lab experiments. As a detection platform, a screen-printed carbon electrode (SPCE) enhanced with a nanocomposite containing gold nanoparticles and graphene was used. The morphology of the nanoparticles was analysed by field-emission
  • their mismatches, noncomplementary, and nontarget species DNA measured by DPV. The developed biosensor exhibited a selective response towards reverse complementary DNAs and was able to discriminate turtles from other species. The modified electrode displayed good linearity for reverse complementary DNAs
  • carbon electrode; Introduction The Southeast Asian box turtle (BT), Cuora amboinensis, is an endangered and protected turtle species. Due to its high value as an exotic food item and in traditional medicine, it ends up being a profitable item in the illicit wildlife trade [1]. Turtles contain active
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2022

Coherent amplification of radiation from two phase-locked Josephson junction arrays

  • Mikhail A. Galin,
  • Vladimir M. Krasnov,
  • Ilya A. Shereshevsky,
  • Nadezhda K. Vdovicheva and
  • Vladislav V. Kurin

Beilstein J. Nanotechnol. 2022, 13, 1445–1457, doi:10.3762/bjnano.13.119

Graphical Abstract
  • working similar to lasers is discussed in more detail in [8]. The resonator can be a cavity of the JJs itself [2], an electrode with embedded JJs [9], or the dielectric substrate on which the JJ array is arranged [10]. Coherent superradiant amplification of emitted power is caused by a constructive
  • factor well above a factor of two. The goal of our work is to study inter-array coupling and its manifestations. In this work we study the interaction between two linear arrays of Nb/NbSi/Nb JJs. The arrays have a single-line geometry with 332 or 380 JJs embedded in a straight electrode. We analyze the
  • make a vanishingly small contribution to the radiation power (see Appendix). Therefore, the overall emission spectrum remains very sharp and is practically not influenced by the voltage/frequency deviation at nodal JJs. In fact, it is the cavity mode in the electrode, rather than individual junctions
PDF
Album
Full Research Paper
Published 06 Dec 2022

Density of states in the presence of spin-dependent scattering in SF bilayers: a numerical and analytical approach

  • Tairzhan Karabassov,
  • Valeriia D. Pashkovskaia,
  • Nikita A. Parkhomenko,
  • Anastasia V. Guravova,
  • Elena A. Kazakova,
  • Boris G. Lvov,
  • Alexander A. Golubov and
  • Andrey S. Vasenko

Beilstein J. Nanotechnol. 2022, 13, 1418–1431, doi:10.3762/bjnano.13.117

Graphical Abstract
  • structure under consideration is depicted in Figure 1. It consists of a ferromagnetic layer with thickness df and a superconducting electrode along the x direction. The SF interface is characterized by the dimensionless parameter γB = RBσn/ξf, where RB is the resistance of the SF interface in units Ω·m2, σn
PDF
Album
Full Research Paper
Published 01 Dec 2022

LED-light-activated photocatalytic performance of metal-free carbon-modified hexagonal boron nitride towards degradation of methylene blue and phenol

  • Nirmalendu S. Mishra and
  • Pichiah Saravanan

Beilstein J. Nanotechnol. 2022, 13, 1380–1392, doi:10.3762/bjnano.13.114

Graphical Abstract
  • utilizing an EMX micro A200-9.5/12/S/W, Bruker Biospin, Germany. Photoelectrochemical study The photoelectrochemical properties of the studied materials were evaluated through a CHI 650 electrochemical workstation comprising a three-electrode system with Pt and Ag/AgCl as counter and reference electrodes
  • , respectively. The setup consists of a 0.5 M Na2SO4 electrolyte/hole-scavenger solution along with LED lamps as a visible light source. The working electrode was fabricated through an ITO-PTFE electrode (dimensions: 1 cm × 1 cm) drop casted with a slurry of the studied materials, isopropanol and Nafion solution
  • MBN-80 by providing in-depth information on the charge transfer kinetics, and the obtained Nyquist plots are depicted in Figure 6a. The charge transfer resistance at the electrode–electrolyte interface can be interpreted through the arc radius from the Nyquist plot [30]. The lower Nyquist radius for
PDF
Album
Full Research Paper
Published 22 Nov 2022

Near-infrared photoactive Ag-Zn-Ga-S-Se quantum dots for high-performance quantum dot-sensitized solar cells

  • Roopakala Kottayi,
  • Ilangovan Veerappan and
  • Ramadasse Sittaramane

Beilstein J. Nanotechnol. 2022, 13, 1337–1344, doi:10.3762/bjnano.13.110

Graphical Abstract
  • blade method, which was followed by sintering at 450 °C for 30 min as described earlier [8][9][10]. The glass plate was dipped in 0.12 M of titanium tetrachloride solution at 70 °C for 30 min and was then rinsed with distilled water thoroughly and dried at 60 °C. After that, the electrode was soaked for
  • 24 h with a MPA/acetonitrile solution 3:7 (v/v). This substrate was then immersed into the colloidal AZGSSe QD solution for 48 h to obtain the AZGSSe-sensitized TiO2 NF-based photoanode. Assembly of QDSCs Earlier reports revealed that Cu2S is a low-cost and efficient counter electrode (CE) for QDSCs
  • ) that appears at the interface of electrolyte and counter electrode. The low-frequency region hemisphere is attributed to the charge transfer resistance (R2) appearing at the interface of electrolyte and photoanode. The sheet resistance (Rs) is the resistance of the intercept of the real axis. Similarly
PDF
Album
Full Research Paper
Published 14 Nov 2022

Laser-processed antiadhesive bionic combs for handling nanofibers inspired by nanostructures on the legs of cribellate spiders

  • Sebastian Lifka,
  • Kristóf Harsányi,
  • Erich Baumgartner,
  • Lukas Pichler,
  • Dariya Baiko,
  • Karsten Wasmuth,
  • Johannes Heitz,
  • Marco Meyer,
  • Anna-Christin Joel,
  • Jörn Bonse and
  • Werner Baumgartner

Beilstein J. Nanotechnol. 2022, 13, 1268–1283, doi:10.3762/bjnano.13.105

Graphical Abstract
  • opposite to the needle at a distance of about 10 cm. The positive electrode of a high-voltage generator (HCP 35 – 35 000, FuG Elektronik GmbH, Schechen, Germany) was clamped onto the needle and the ground electrode was clamped onto the aluminium sample carrier. The corresponding voltage was set to 20 kV
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • combine the versatility of electrochemistry and CP technology. They are more accessible in terms of samples, either as a second electrode under open circuit conditions, under double constant potential control or as an insulating surface. In the future, there is excellent scope for eCPs in applications
PDF
Album
Review
Published 03 Nov 2022

Design of surface nanostructures for chirality sensing based on quartz crystal microbalance

  • Yinglin Ma,
  • Xiangyun Xiao and
  • Qingmin Ji

Beilstein J. Nanotechnol. 2022, 13, 1201–1219, doi:10.3762/bjnano.13.100

Graphical Abstract
  • induced by external stimulus. As there are almost no limitations for the receptor layers in QCM sensor systems, various materials and nanostructures have been developed for constructing sensing layers on the surface of the electrode. The sensing process may also be implemented in the liquid and gas phases
  • recognition of biomolecules (Figure 2) [38]. The sensing films of poly(EDOT-OH) with either R or S chirality were directly synthesized on the surface of the QCM electrode and engineered with different morphologies of nanotubular arrays and smooth membranes. The binding effects of fetal bovine serum, RGD
  • -coated poly(ethylene terephthalate) (PET) layer on the surface of an electrode [48]. By controlling the deposition conditions, a stable layer with a high loading amount of MIP nanoparticles could be obtained, which would allow for the detection limit of propranolol to be 2 nmol·cm−2 or approx. 1 × 1015
PDF
Album
Review
Published 27 Oct 2022

Application of nanoarchitectonics in moist-electric generation

  • Jia-Cheng Feng and
  • Hong Xia

Beilstein J. Nanotechnol. 2022, 13, 1185–1200, doi:10.3762/bjnano.13.99

Graphical Abstract
  • energy from the movement of water droplets and provides a 3 V, 2 μA instantaneous electrical output. It is designed as a hydrophobic layer plus a polymeric dielectric layer with an electrode layer for electron flow at the bottom [78]. As shown in Figure 6e and f, the effects of different ions on the
  • electrode materials to collect the electric energy, wearable MEG textiles still need require further investigation. MEGs also have potential in other research fields. In micro/nano-driven devices [92], a hygro-responsive layer can use ambient humidity to provide a continuous power supply for the device
  • Elsevier (2017). This content is not subject to CC BY 4.0. d) The device is designed through the interface to increase the output power. (e) Voltage and current output of the device. (f) Device configurations with different electrode designs. (g, h) Voltage and current output of three generators with
PDF
Album
Review
Published 25 Oct 2022

Recent advances in green carbon dots (2015–2022): synthesis, metal ion sensing, and biological applications

  • Aisha Kanwal,
  • Naheed Bibi,
  • Sajjad Hyder,
  • Arif Muhammad,
  • Hao Ren,
  • Jiangtao Liu and
  • Zhongli Lei

Beilstein J. Nanotechnol. 2022, 13, 1068–1107, doi:10.3762/bjnano.13.93

Graphical Abstract
PDF
Album
Review
Published 05 Oct 2022

Electrocatalytic oxygen reduction activity of AgCoCu oxides on reduced graphene oxide in alkaline media

  • Iyyappan Madakannu,
  • Indrajit Patil,
  • Bhalchandra Kakade and
  • Kasibhatta Kumara Ramanatha Datta

Beilstein J. Nanotechnol. 2022, 13, 1020–1029, doi:10.3762/bjnano.13.89

Graphical Abstract
  • environmentally friendly with zero emissions at the time of use. These systems have the ability to convert chemical energy into electric energy with the highest conversion possible [1][2]. The active electrode reactions include the hydrogen oxidation reaction (HOR) and the oxygen reduction reaction (ORR). The
  • slow reaction rates of the electrode processes impede the efficiency and, thus, require innovative catalyst designs. The ORR is an irreversible, complex (involving multiple steps and intermediates O, OH−, O2−, HO2− and H2O2) and kinetically slow process (via two- or four-electron transfer) dominating
  • ][13][14]. In particular, the ORR in alkaline environments with faster kinetics and lower over potential requires stable transition metal-derived electrocatalysts [15]. The major hurdles for Pt-based ORR electrode catalysts in alkaline media include high cost, low operational stability, fuel crossover
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2022

Efficiency of electron cooling in cold-electron bolometers with traps

  • Dmitrii A. Pimanov,
  • Vladimir A. Frost,
  • Anton V. Blagodatkin,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 896–901, doi:10.3762/bjnano.13.80

Graphical Abstract
  • experiments (in our previous calculations we have used the fifth power). Σ is the electron–phonon coupling constant; it has different values, depending on the electron temperature [17]. VN is the absorber volume, Pcool is the direct electron cooling power, PS is the net power transferred to the S-electrode
PDF
Album
Full Research Paper
Published 07 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • B2902A Precision Source/Measure Unit, immediately after the functionalization process. The source–drain bias was fixed at 1 mV, and we applied the gate voltage via a gold electrode in contact with 100 mM PBS or human serum. PBS was used as electrolyte for validation of the graphene functionalization with
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Self-assembly of C60 on a ZnTPP/Fe(001)–p(1 × 1)O substrate: observation of a quasi-freestanding C60 monolayer

  • Guglielmo Albani,
  • Michele Capra,
  • Alessandro Lodesani,
  • Alberto Calloni,
  • Gianlorenzo Bussetti,
  • Marco Finazzi,
  • Franco Ciccacci,
  • Alberto Brambilla,
  • Lamberto Duò and
  • Andrea Picone

Beilstein J. Nanotechnol. 2022, 13, 857–864, doi:10.3762/bjnano.13.76

Graphical Abstract
  • fullerene films stabilized directly on metal surfaces. Our results unveil a model system that could be useful in applications in which a quasi-freestanding monolayer of C60 interfaced with a metallic electrode is required. Keywords: fullerene; scanning tunneling microscopy; ultraviolet photoemission
PDF
Album
Full Research Paper
Published 30 Aug 2022

Hierarchical Bi2WO6/TiO2-nanotube composites derived from natural cellulose for visible-light photocatalytic treatment of pollutants

  • Zehao Lin,
  • Zhan Yang and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2022, 13, 745–762, doi:10.3762/bjnano.13.66

Graphical Abstract
  • , respectively. The transient photocurrent responses and electrochemical impedance spectroscopy (EIS) Nyquist plots (frequency: 0.01 Hz−100 kHz, alternate current: 5 mV) of a given sample were obtained on a CHI 760D (Shanghai, China) electrochemical workstation using a three-electrode system. The Pt plate (1.0
  • × 1.0 cm2) and saturated calomel electrode (SCE) were used as the reference and counter electrodes, respectively. The Na2SO4 aqueous solution (0.5 M) was employed as the electrolyte and a xenon lamp with a 420 nm cutoff filter was used as the light source. The corresponding sample (5.0 mg) was
  • electrode. Photocatalytic experiments The photocatalytic experiments were conducted on the XPA-1 photoreactor (Nanjing Xujiang, China) under a constant temperature (20 °C), and a 350 W xenon lamp with a 420 nm cutoff filter was employed as the visible-light source, which was kept in a horizontal distance of
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2022

A nonenzymatic reduced graphene oxide-based nanosensor for parathion

  • Sarani Sen,
  • Anurag Roy,
  • Ambarish Sanyal and
  • Parukuttyamma Sujatha Devi

Beilstein J. Nanotechnol. 2022, 13, 730–744, doi:10.3762/bjnano.13.65

Graphical Abstract
  • the fabrication of a robust, nonenzymatic electrochemical-sensing electrode modified with electrochemically reduced graphene oxide (ERGO) to detect PT residues in environmental samples (e.g., soil, water) as well as in vegetables and cereals. The ERGO sensor shows a significantly affected
  • electrocatalytic reduction peak at −0.58 V (vs Ag/AgCl) for rapid quantification of PT due to the amplified electroactive surface area of the modified electrode. At optimized experimental conditions, square-wave voltammetric analysis exhibits higher sensitivity (50.5 μA·μM−1·cm−2), excellent selectivity, excellent
  • and straightforward responsive nature, high sensitivity, and selectivity leading to real-time detection [7]. A combination of a receptor, an analyte, and a transducer is made up to obtain an electrochemical sensor, in which the surface of the electrode induces redox characteristics via selective
PDF
Album
Supp Info
Full Research Paper
Published 28 Jul 2022

Modeling a multiple-chain emeraldine gas sensor for NH3 and NO2 detection

  • Hana Sustkova and
  • Jan Voves

Beilstein J. Nanotechnol. 2022, 13, 721–729, doi:10.3762/bjnano.13.64

Graphical Abstract
  • right side is calculated accordingly. In the equation, f is the Fermi–Dirac function for the electron distribution in the left or right electrode and depends on the electron temperature TL; ρ(ε) stands for the spectral density matrix, defined by the broadening function Γ and the retarded Green’s
  • function G. The spectral density matrix has the form [16]: for Green’s function and broadening function and In this equation, δ+ is an infinitesimal positive number, Σ is the self-energy of the left or right electrode, S stands for the overlap matrix and H is the Hamiltonian matrix. These are defined for
PDF
Album
Full Research Paper
Published 26 Jul 2022

Experimental and theoretical study of field-dependent spin splitting at ferromagnetic insulator–superconductor interfaces

  • Peter Machon,
  • Michael J. Wolf,
  • Detlef Beckmann and
  • Wolfgang Belzig

Beilstein J. Nanotechnol. 2022, 13, 682–688, doi:10.3762/bjnano.13.60

Graphical Abstract
  • an oxide layer. The normal layer acts as the tunnel probe to measure the differential conductance of the superconductor and is assumed not to influence the system properties. Since the size of the detector electrode is not small (unlike the tip of a scanning tunneling microscope) and the FI affects
PDF
Album
Full Research Paper
Published 20 Jul 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • electrochemical exfoliation, whereby graphene is exfoliated in an electrolyte from an electrode made of graphite [19]. In electrochemical exfoliation, ions from the electrolyte flow towards the graphite electrode and intercalate between the graphene layers. The electrochemical reaction provides a driving force to
  • light path. Graphene film resistance was measured by inserting the substrates with electrodes into an electrode connector (DRP-CACIDE, Metrohm, Oviedo, Spain) and the acquiring resistance with a handheld digital multimeter. Optical dark-field microscopy of the films was performed with a magnification of
PDF
Album
Full Research Paper
Published 18 Jul 2022

Approaching microwave photon sensitivity with Al Josephson junctions

  • Andrey L. Pankratov,
  • Anna V. Gordeeva,
  • Leonid S. Revin,
  • Dmitry A. Ladeynov,
  • Anton A. Yablokov and
  • Leonid S. Kuzmin

Beilstein J. Nanotechnol. 2022, 13, 582–589, doi:10.3762/bjnano.13.50

Graphical Abstract
  • stages. (b) SEM image of the SIS junction. The top electrode is highlighted in magenta color, the bottom electrode (blue color) has the same shape as the top one in the area of the tunnel barrier. (c) Time diagram of the channels: current through the JJ, initial pulse modulation of the microwave signal
PDF
Album
Full Research Paper
Published 04 Jul 2022
Other Beilstein-Institut Open Science Activities