Search results

Search for "fabrication" in Full Text gives 892 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Polyurethane/silk fibroin-based electrospun membranes for wound healing and skin substitute applications

  • Iqra Zainab,
  • Zohra Naseem,
  • Syeda Rubab Batool,
  • Muhammad Waqas,
  • Ahsan Nazir and
  • Muhammad Anwaar Nazeer

Beilstein J. Nanotechnol. 2025, 16, 591–612, doi:10.3762/bjnano.16.46

Graphical Abstract
  • . Although electrospun SF nanofibers are highly biocompatible, their tiny pore size inhibits cell penetration. To solve this, sodium chloride crystals of various sizes were incorporated into the nanofibers during fabrication, resulting in increased pore size. The wound healing properties of the 3D SF
  • inflammation and fibrotic scar formation. These results were due to the presence of CD90-positive cells in the treated wounds, which helped to produce well-vascularized granulation tissue and improved tissue regeneration compared to single treatments [91]. The structure, fabrication, processing, and
  • growth [175]. Zhou et al. focused on the fabrication of a novel composite membrane suitable for photothermal cancer therapy based on black phosphorus (BP) nanosheets because of their high biocompatibility and photothermal efficacy. SF was used as an exfoliating agent in stable liquid exfoliation with
PDF
Album
Review
Published 24 Apr 2025

Functionalized gold nanoflowers on carbon screen-printed electrodes: an electrochemical platform for biosensing hemagglutinin protein of influenza A H1N1 virus

  • Carlos Enrique Torres-Méndez,
  • Sharmilee Nandi,
  • Klara Martinovic,
  • Patrizia Kühne,
  • Yifan Liu,
  • Sam Taylor,
  • Maria Lysandrou,
  • Maria Ines Berrojo Romeyro Mascarenhas,
  • Viktoria Langwallner,
  • Javier Enrique Sebastián Alonso,
  • Ivana Jovanovic,
  • Maike Lüftner,
  • Georgia-Vasiliki Gkountana,
  • David Bern,
  • Abdul-Raouf Atif,
  • Ehsan Manouchehri Doulabi,
  • Gemma Mestres and
  • Masood Kamali-Moghaddam

Beilstein J. Nanotechnol. 2025, 16, 540–550, doi:10.3762/bjnano.16.42

Graphical Abstract
  • forms. Electrochemical characterization Although CSPEs have advantageous features such as low cost and wide availability, they tend to possess a characteristic high electrical resistance due to the use of inks containing organic molecules and polymeric binders during the fabrication process [32]. This
PDF
Album
Supp Info
Full Research Paper
Published 16 Apr 2025

Electron beam-based direct writing of nanostructures using a palladium β-ketoesterate complex

  • Chinmai Sai Jureddy,
  • Krzysztof Maćkosz,
  • Aleksandra Butrymowicz-Kubiak,
  • Iwona B. Szymańska,
  • Patrik Hoffmann and
  • Ivo Utke

Beilstein J. Nanotechnol. 2025, 16, 530–539, doi:10.3762/bjnano.16.41

Graphical Abstract
  • promising precursor for nanoprinting 3D structures with finely focused electron beams. Keywords: 3D nanoprinting; electron-induced molecule dissociation; focused electron beam-induced deposition; metal nanostructures; metalorganic complexes; Introduction Direct fabrication of nanostructures without the
  • of further studies of dissociation and desorption mechanisms involved in the removal of the carbon- and oxygen-rich ketoesterate ligands. The nanopillar formed from this precursor demonstrates its potential for 3D nanostructure fabrication using FEBID. The structure of bis(tert-butylacetoacetate
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2025

Synthetic-polymer-assisted antisense oligonucleotide delivery: targeted approaches for precision disease treatment

  • Ana Cubillo Alvarez,
  • Dylan Maguire and
  • Ruairí P. Brannigan

Beilstein J. Nanotechnol. 2025, 16, 435–463, doi:10.3762/bjnano.16.34

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2025

Quantification of lead through rod-shaped silver-doped zinc oxide nanoparticles using an electrochemical approach

  • Ravinder Lamba,
  • Gaurav Bhanjana,
  • Neeraj Dilbaghi,
  • Vivek Gupta and
  • Sandeep Kumar

Beilstein J. Nanotechnol. 2025, 16, 422–434, doi:10.3762/bjnano.16.33

Graphical Abstract
  • chemical substances [7][8]. Target detection in real time is a strong suit for electrochemical devices. Electron mediators are typically used to modify the working electrodes in electrochemical sensor fabrication. These days, due to their unique electrical and optical characteristics, nanomaterials are
  • ions such as lead. The reason for this is that the addition of silver decreases the holes and electron recombination rate, resulting in an expansion of the surface area. Subsequently, they were effectively employed as an electron mediator in the fabrication of highly sensitive lead sensors. The fact
  • vibrations, rotational energy, electronic energy levels, and scattering characteristics of Ag–ZnO nanorods. The Malvern Nano-ZS90 was utilized to determine the zeta potential of synthesized nanorods. Fabrication of the lead sensor / (Ag@ZnO nanorods/gold electrode) The obtained Ag@ZnO NRs served as an
PDF
Album
Full Research Paper
Published 26 Mar 2025

Pulsed laser in liquid grafting of gold nanoparticle–carbon support composites

  • Madeleine K. Wilsey,
  • Teona Taseska,
  • Qishen Lyu,
  • Connor P. Cox and
  • Astrid M. Müller

Beilstein J. Nanotechnol. 2025, 16, 349–361, doi:10.3762/bjnano.16.26

Graphical Abstract
  • , University of Rochester, Rochester, New York 14627, United States 10.3762/bjnano.16.26 Abstract We developed a novel pulsed laser-assisted process for the fabrication of advanced composites of nonequilibrium gold nanoparticles on carbon fiber paper supports. Our one-step process integrates the generation of
  • the need for synthesizing, collecting, and attaching nanoparticles separately. This way, composite fabrication becomes more time-saving, cost-effective, and environmentally friendly. A premier electrode support material is carbon because it is affordable, scalable, and stable under many
  • paper composite fabrication. The mass activity of pulsed laser-grafted cathodes was a factor of 1.65 higher than that of conventionally prepared electrodes (Figure 6A). Chronopotentiometry data, collected in an H-cell at a constant current density of −10 mA·cm−2, corroborated the exceptional stability
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2025

Tailoring of physical properties of RF-sputtered ZnTe films: role of substrate temperature

  • Kafi Devi,
  • Usha Rani,
  • Arun Kumar,
  • Divya Gupta and
  • Sanjeev Aggarwal

Beilstein J. Nanotechnol. 2025, 16, 333–348, doi:10.3762/bjnano.16.25

Graphical Abstract
  • , depending on the deposition method and deposition parameters. ZnTe is sensitive towards visible and infrared illumination; hence, it is used in the fabrication of optoelectronic devices and infrared detectors. Moreover, its electrical aspects are alterable in intrinsic or doped binary (ZnTe) and ternary
  • at 500 °C. While a significant increase in crystallite size from 52.11 Å at 500 °C to 68.66 Å at 600 °C is observed. All these alterations in crystallite size can be explained in terms of growth processes occurring during film fabrication. In RF sputtering, the film formation is preceded by three
  • points towards a nearly ohmic contact between ZnTe film and quartz substrate, which is necessary for the fabrication of the optoelectronic device. The conductivity (σ) of films was determined using the relation [41] where ρ is the electrical resistivity, R is the resistance of the film, A is the area of
PDF
Album
Supp Info
Full Research Paper
Published 05 Mar 2025

Fabrication and evaluation of BerNPs regarding the growth and development of Streptococcus mutans

  • Tuyen Huu Nguyen,
  • Hong Thanh Pham,
  • Kieu Kim Thanh Nguyen,
  • Loan Hong Ngo,
  • Anh Ngoc Tuan Mai,
  • Thu Hoang Anh Lam,
  • Ngan Thi Kim Phan,
  • Dung Tien Pham,
  • Duong Thuy Hoang,
  • Thuc Dong Nguyen and
  • Lien Thi Xuan Truong

Beilstein J. Nanotechnol. 2025, 16, 308–315, doi:10.3762/bjnano.16.23

Graphical Abstract
PDF
Album
Full Research Paper
Published 27 Feb 2025

Enhancing mechanical properties of chitosan/PVA electrospun nanofibers: a comprehensive review

  • Nur Areisman Mohd Salleh,
  • Amalina Muhammad Afifi,
  • Fathiah Mohamed Zuki and
  • Hanna Sofia SalehHudin

Beilstein J. Nanotechnol. 2025, 16, 286–307, doi:10.3762/bjnano.16.22

Graphical Abstract
  • [9]. In this review, we focus on the background of the electrospinning process, the properties of chitosan/PVA electrospun nanofibers, and fabrication techniques, including the effects of various parameters and post-treatment methods. We also review the characterization of chitosan/PVA electrospun
  • , and environment. For electrospinning, factors such as applied electric field, distance between the needle and collector, flow rate, and needle diameter affect the fabrication of the nanofibrous sample. Solution parameters include the types of solvent, polymer concentration, viscosity, and solution
  • overcome these limitations, without losing the advantages of PVA such as biodegradability, is to blend PVA with stiff and water-insoluble biodegradable polymers such as chitosan [68]. Fabrication techniques Nanofibers can be fabricated using different methods such as direct drawing, template synthesis
PDF
Album
Review
Published 26 Feb 2025

Recent advances in photothermal nanomaterials for ophthalmic applications

  • Jiayuan Zhuang,
  • Linhui Jia,
  • Chenghao Li,
  • Rui Yang,
  • Jiapeng Wang,
  • Wen-an Wang,
  • Heng Zhou and
  • Xiangxia Luo

Beilstein J. Nanotechnol. 2025, 16, 195–215, doi:10.3762/bjnano.16.16

Graphical Abstract
  • conditions [19][20][21]. The straightforward and cost-effective fabrication of photothermal nanomaterials enhances their practicality, promising rapid advancements in the field of photothermal nanotherapeutics in ophthalmology. This paper reviews recent research progress in the application of photothermal
PDF
Album
Review
Published 17 Feb 2025

A review of metal-organic frameworks and polymers in mixed matrix membranes for CO2 capture

  • Charlotte Skjold Qvist Christensen,
  • Nicholas Hansen,
  • Mahboubeh Motadayen,
  • Nina Lock,
  • Martin Lahn Henriksen and
  • Jonathan Quinson

Beilstein J. Nanotechnol. 2025, 16, 155–186, doi:10.3762/bjnano.16.14

Graphical Abstract
  • frameworks (MOFs) have gained recognition as MMM fillers for CO2 capture. Here, a review of the current state, recent advancements, and challenges in the fabrication and engineering of MMMs with MOFs for selective CO2 capture is proposed. Key considerations and promising research directions to fully exploit
  • opportunities encountered in the development and fabrication of MOF-based MMMs for CO2 capture. An account of current trends in the field is given, while gaps and further areas of investigation are identified and highlighted. Specifically, the review intends to convey a broad yet comprehensive understanding of
  • -scale CO2 capture applications. The contents of this review are at the junction of different research areas for which interested readers can refer to dedicated existing literature. For example, Sumida et al. [26] provide a comprehensive review of CO2 capture using MOFs, while details on the fabrication
PDF
Album
Supp Info
Review
Published 12 Feb 2025

Comparison of organic and inorganic hole transport layers in double perovskite material-based solar cell

  • Deepika K and
  • Arjun Singh

Beilstein J. Nanotechnol. 2025, 16, 119–127, doi:10.3762/bjnano.16.11

Graphical Abstract
  • , extended carrier diffusion lengths, and adjustable direct bandgaps. Also, there are well-established fabrication techniques that have positioned PSCs as a solution-processable photovoltaic technology [4]. Over the past few years, a significant improvement in the PCE of the PSCs was reported, from 3.8% in
  • under ambient conditions with humidity levels of 35–40%. Here, 3,4-dihydroxyphenethylamine hydrochloride (3,4-DpACl) was used as an additive during perovskite fabrication. Despite significant research efforts, there are stability issues when working under critical environmental conditions, which is an
PDF
Album
Full Research Paper
Published 06 Feb 2025

Characterization of ZnO nanoparticles synthesized using probiotic Lactiplantibacillus plantarum GP258

  • Prashantkumar Siddappa Chakra,
  • Aishwarya Banakar,
  • Shriram Narayan Puranik,
  • Vishwas Kaveeshwar,
  • C. R. Ravikumar and
  • Devaraja Gayathri

Beilstein J. Nanotechnol. 2025, 16, 78–89, doi:10.3762/bjnano.16.8

Graphical Abstract
  • as capping and reducing agents for ZnO NP synthesis, offering a sustainable and environmentally friendly route for nanoparticle fabrication. To characterize the synthesized ZnO NPs, a range of analytical techniques were harnessed. XRD analysis established the occurrence of ZnO NPs with the hexagonal
PDF
Album
Full Research Paper
Published 30 Jan 2025

Precursor sticking coefficient determination from indented deposits fabricated by electron beam induced deposition

  • Alexander Kuprava and
  • Michael Huth

Beilstein J. Nanotechnol. 2025, 16, 35–43, doi:10.3762/bjnano.16.4

Graphical Abstract
  • ; Introduction Nanoscale fabrication of free-form structures via methods like focused electron or ion beam induced deposition (FEBID/FIBID) requires precise beam control and sufficient knowledge of key properties of the precursor material used [1]. In addition, a reliable prediction of the expected deposit shape
PDF
Album
Supp Info
Full Research Paper
Published 13 Jan 2025

Mechanistic insights into endosomal escape by sodium oleate-modified liposomes

  • Ebrahim Sadaqa,
  • Satrialdi,
  • Fransiska Kurniawan and
  • Diky Mudhakir

Beilstein J. Nanotechnol. 2024, 15, 1667–1685, doi:10.3762/bjnano.15.131

Graphical Abstract
  • . The SO-Lipo variant was enriched with 10 mol % sodium oleate incorporated into the lipid blend before the liposome assembly process. Divergently, the fabrication of AUR-Lipo involved the post-integration of 135 µM stearylated aurein 1.2 peptide into pre-assembled liposomes, using HEPES buffer as the
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2024

Fabrication of hafnium-based nanoparticles and nanostructures using picosecond laser ablation

  • Abhishek Das,
  • Mangababu Akkanaboina,
  • Jagannath Rathod,
  • R. Sai Prasad Goud,
  • Kanaka Ravi Kumar,
  • Raghu C. Reddy,
  • Ratheesh Ravendran,
  • Katia Vutova,
  • S. V. S. Nageswara Rao and
  • Venugopal Rao Soma

Beilstein J. Nanotechnol. 2024, 15, 1639–1653, doi:10.3762/bjnano.15.129

Graphical Abstract
  • . All NPs exhibited novel optical reflectance properties. Reflectance measurements revealed that the fabricated NPs had a very high and broad optical absorption throughout the UV–vis–NIR range. The NPs synthesised in toluene exhibited the best absorption. The successful fabrication of Hf NSs with the
  • fabrication of the NPs and NSs. The ablation was performed in three different liquids, that is, DW, toluene, and anisole. As illustrated in Figure 2, the incoming laser beam was focused vertically on the Hf target in a liquid-filled glass cell using a plano-convex lens (f = 80 mm). The liquid surface was
  • illustrates the NS fabrication with picosecond LAL by raster scanning the Hf target. The figure also depicts the LSFL and HSFL formed on the target during the scanning process. The LAL technique is versatile since the NPs and NSs are obtained simultaneously in a single experiment, which is impossible with any
PDF
Album
Full Research Paper
Published 18 Dec 2024

Heterogeneous reactions in a HFCVD reactor: simulation using a 2D model

  • Xochitl Aleyda Morán Martínez,
  • José Alberto Luna López,
  • Zaira Jocelyn Hernández Simón,
  • Gabriel Omar Mendoza Conde,
  • José Álvaro David Hernández de Luz and
  • Godofredo García Salgado

Beilstein J. Nanotechnol. 2024, 15, 1627–1638, doi:10.3762/bjnano.15.128

Graphical Abstract
  • for the subsequent growth of the SiOx films. These SiOx films have interesting properties and embedded nanostructures, which make them excellent dielectric, optoelectronic, and electroacoustic materials for the fabrication of devices compatible with silicon-based technology. Keywords: 2D model
PDF
Album
Full Research Paper
Published 17 Dec 2024

Electrochemical nanostructured CuBTC/FeBTC MOF composite sensor for enrofloxacin detection

  • Thi Kim Ngan Nguyen,
  • Tien Dat Doan,
  • Huy Hieu Luu,
  • Hoang Anh Nguyen,
  • Thi Thu Ha Vu,
  • Quang Hai Tran,
  • Ha Tran Nguyen,
  • Thanh Binh Dang,
  • Thi Hai Yen Pham and
  • Mai Ha Hoang

Beilstein J. Nanotechnol. 2024, 15, 1522–1535, doi:10.3762/bjnano.15.120

Graphical Abstract
  • current of approximately 6 µA. Therefore, the optimal weight percentages of 5% CuBTC and 5% FeBTC were chosen for electrode fabrication in the subsequent experiments. Effect of supporting electrolyte on the ENR signal The electrolyte plays a crucial role in the oxidation reaction of ENR. Four electrolytes
PDF
Album
Full Research Paper
Published 28 Nov 2024

Polymer lipid hybrid nanoparticles for phytochemical delivery: challenges, progress, and future prospects

  • Iqra Rahat,
  • Pooja Yadav,
  • Aditi Singhal,
  • Mohammad Fareed,
  • Jaganathan Raja Purushothaman,
  • Mohammed Aslam,
  • Raju Balaji,
  • Sonali Patil-Shinde and
  • Md. Rizwanullah

Beilstein J. Nanotechnol. 2024, 15, 1473–1497, doi:10.3762/bjnano.15.118

Graphical Abstract
  • , and a short biological half-life [136][137]. Markowski et al. reported the design and fabrication of UA-loaded PLHNPs for improved therapeutic efficacy against pancreatic ductal adenocarcinoma cells [138]. The formulated nanocarrier showed better serum stability and long-term stability. Cell culture
PDF
Album
Review
Published 22 Nov 2024

Ion-induced surface reactions and deposition from Pt(CO)2Cl2 and Pt(CO)2Br2

  • Mohammed K. Abdel-Rahman,
  • Patrick M. Eckhert,
  • Atul Chaudhary,
  • Johnathon M. Johnson,
  • Jo-Chi Yu,
  • Lisa McElwee-White and
  • D. Howard Fairbrother

Beilstein J. Nanotechnol. 2024, 15, 1427–1439, doi:10.3762/bjnano.15.115

Graphical Abstract
  • greater purity such as the FEBID fabrication of Co3Fe nanowires [15][26][27]. Similarly, the frequently studied Pt precursor MeCpPtMe3 yields a deposit with nearly 100% Pt content from CVD [28][29]. This purity is achieved by utilizing reactive carrier gases, such as H2 and O2, as co-reactants during
PDF
Album
Supp Info
Full Research Paper
Published 19 Nov 2024

Lithium niobate on insulator: an emerging nanophotonic crystal for optimized light control

  • Midhun Murali,
  • Amit Banerjee and
  • Tanmoy Basu

Beilstein J. Nanotechnol. 2024, 15, 1415–1426, doi:10.3762/bjnano.15.114

Graphical Abstract
  • (QIP) systems. Despite the challenges such as fabrication complexity [6] and loss mitigation scalability to complex circuits [7], the potential benefits of DBRs for QIP applications continue to drive research and development in this field [8]. As fabrication techniques and material systems develop
  • from the visible to the infrared (400–5000 nm) [13]. The high degree of flexibility in fabrication created functional photonic nanostructures such as microring, periodically poled lithium niobate, and photonic crystals [14][15]. This versatility makes it suitable for DBRs to be used in various
  • applications. Moreover, its platform with established fabrication techniques guarantees consistent device performance. Finally, the potential for integration with other photonic components on a single chip, coupled with its CMOS compatibility, paves the way for highly sophisticated photonic integrated circuits
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2024

Various CVD-grown ZnO nanostructures for nanodevices and interdisciplinary applications

  • The-Long Phan,
  • Le Viet Cuong,
  • Vu Dinh Lam and
  • Ngoc Toan Dang

Beilstein J. Nanotechnol. 2024, 15, 1390–1399, doi:10.3762/bjnano.15.112

Graphical Abstract
  • surface effects dependent on the surface-to-volume ratio, which directly influences the electronic structure and the crystal structure symmetry. Thus, the study and fabrication of nanomaterials not only aim at exploring novel approaches of quantum physics, but also at realizing new multifunctional
  • microcavities [9]. Additionally, it is a transparent semiconductor with significant piezoelectricity [10]. These noble characteristics suggest ZnO to be a potential material in the fabrication of UV/blue/green LEDs, solid-state random lasers, UV-absorption devices, and nanogenerators [9][11][12][13]. Magnetic
  • intelligence and internet of things [15][16][17]. Particularly during material fabrication processes, it has been discovered that ZnO exhibits many interesting structures in the nanoscale, such as rods, wires, rings, tubes, helixes, stars, bows, propellers, and cages [18][19][20][21][22][23][24]. Together with
PDF
Album
Full Research Paper
Published 11 Nov 2024

A biomimetic approach towards a universal slippery liquid infused surface coating

  • Ryan A. Faase,
  • Madeleine H. Hummel,
  • AnneMarie V. Hasbrook,
  • Andrew P. Carpenter and
  • Joe E. Baio

Beilstein J. Nanotechnol. 2024, 15, 1376–1389, doi:10.3762/bjnano.15.111

Graphical Abstract
  • fabrication of SLIPS by producing the required lubricant anchor layer through the polymerization of dopamine. This dopamine polymerization step is extremely simple and will form a “sticky” layer to almost any chemistry, thereby, providing a straightforward process to produce a SLIPS layer on almost any
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2024

Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication

  • Muhammed Taha Durmus and
  • Ebru Bozkurt

Beilstein J. Nanotechnol. 2024, 15, 1369–1375, doi:10.3762/bjnano.15.110

Graphical Abstract
  • , Turkey 10.3762/bjnano.15.110 Abstract In this study, we aimed to synthesize new carbon dot structures (CDs) in a single step by using the plant Rheum Ribes for the first time and to contribute to the studies in the field of diode fabrication by using the new CDs. The CDs were obtained by hydrothermal
  • supernatant was removed by decantation and a stock solution was prepared to be used in the studies. The prepared stock solution was stored at 4 °C to prevent contamination [15]. Schottky diode fabrication An n-type silicon substrate was used for Schottky diode fabrication. In the first step, the silicon
  • , the quantum yield of the CDs was calculated as 0.03. Schottky diode fabrication The usability of these newly synthesized CDs in an application area was also discussed. For this purpose, a metal (Au)–semiconductor (CDs) junction-based thin film device was produced. SEM images were taken to determine
PDF
Album
Full Research Paper
Published 07 Nov 2024

Investigation of Hf/Ti bilayers for the development of transition-edge sensor microcalorimeters

  • Victoria Y. Safonova,
  • Anna V. Gordeeva,
  • Anton V. Blagodatkin,
  • Dmitry A. Pimanov,
  • Anton A. Yablokov and
  • Andrey L. Pankratov

Beilstein J. Nanotechnol. 2024, 15, 1353–1361, doi:10.3762/bjnano.15.108

Graphical Abstract
  • width of the superconducting transition, can be used to fabricate a TES microcalorimeter. Sample Fabrication The most typical geometry of a TES is a square, which is advantageous over the elongated shapes for its compactness, leading to more uniform heating during signal readout, and for reduced
  • probability of obtaining inhomogeneous properties along the film during fabrication. As an example, the record energy resolution of just 0.1 eV was demonstrated in TES with sides of 10 × 10 μm2 in [15]. We fabricated three types of samples, namely (1) bridges in square shape with sides from 100 to 1000 μm as
PDF
Album
Full Research Paper
Published 06 Nov 2024
Other Beilstein-Institut Open Science Activities