Search results

Search for "graphene oxide" in Full Text gives 149 result(s) in Beilstein Journal of Nanotechnology.

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • . In 2018, an interesting approach demonstrated that a paper surface functionalized with gold nanoparticles conjugated with graphene oxide showed NIR laser-triggered photothermal ablation of pathogenic bacteria [64]. Upon NIR light exposure, the fabricated paper generated a temperature increase of over
  • nanohole arrays with reduced graphene oxide nanosheets in a unique and flexible polyimide film for laser-gated pathogen inactivation. For the in vivo experiments, the patch was irradiated for 5 min with an LED array (940 nm, 10 W) and the patch surface temperature increased to 52 °C. These tests indicated
  • in 77% planktonic P. aeruginosa cell death. In addition, polyurethane nanocomposites containing the same hybrid nanomaterials were also able to eliminate all the surface-grafted P. aeruginosa cells under NIR light irradiation. Reduced graphene oxide, which is characterized by a broad absorption
PDF
Album
Review
Published 31 Jul 2020

Applications of superparamagnetic iron oxide nanoparticles in drug and therapeutic delivery, and biotechnological advancements

  • Maria Suciu,
  • Corina M. Ionescu,
  • Alexandra Ciorita,
  • Septimiu C. Tripon,
  • Dragos Nica,
  • Hani Al-Salami and
  • Lucian Barbu-Tudoran

Beilstein J. Nanotechnol. 2020, 11, 1092–1109, doi:10.3762/bjnano.11.94

Graphical Abstract
  • PEG and adsorbed on reduced graphene oxide sheets, which enhanced the thermal effect of hyperthermia and reduced the viability of breast cancer cells to less than 25% by reaching 43 °C [152]. Also, Zuvin et al. used 4–5 nm SPIONs conjugated with poly(acrylic acid) and anti-HER2 antibody against breast
PDF
Album
Review
Published 27 Jul 2020

A few-layer graphene/chlorin e6 hybrid nanomaterial and its application in photodynamic therapy against Candida albicans

  • Selene Acosta,
  • Carlos Moreno-Aguilar,
  • Dania Hernández-Sánchez,
  • Beatriz Morales-Cruzado,
  • Erick Sarmiento-Gomez,
  • Carla Bittencourt,
  • Luis Octavio Sánchez-Vargas and
  • Mildred Quintana

Beilstein J. Nanotechnol. 2020, 11, 1054–1061, doi:10.3762/bjnano.11.90

Graphical Abstract
  • , due to their excellent physical and chemical properties (e.g., high surface area, excellent thermal and electric conductivity, high mechanical strength)[19][20][21]. Examples of graphene nanomaterials include single-layer graphene, few-layer graphene (FLG), graphene oxide (GO), and the reduced form of
  • for the stabilization of FLG and graphene oxide (GO). During the exfoliation of GO, the band at 700 nm was not observed since the conjugated system of π-electrons is highly compromised by the large amount of oxygen functionalities present in GO. The π–π stacking interactions between Ce6 and GO are
PDF
Album
Full Research Paper
Published 17 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • nanoparticles of Cu and Ni and one-dimensional nanorods of CuS, ZnF2, and NiF2 protected with fluorinated amorphous carbon. We have also synthesized reduced graphene oxide and partially rolled graphene by this method. Keywords: electric discharges; microwave synthesis; nanomaterials; transmission electron
  • graphene oxide and graphene without using any solvents or additional surfactants. Results and Discussion Smooth surfaces on commercially available metal particles do not create arcs under microwave irradiation. Instead, they heat up or reflects the microwaves. Thus, activating metal surfaces by acid
  • readily without disturbing internal materials. We could also produce reduced graphene oxide and graphene partially rolled into nanoscrolls. We hope that this work encourages further research exploring the possibilities to synthesize other inorganic nanomaterials by microwave-induced electric discharge
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • ][11][12][13]. The performance of the nickel catalysts could be further enhanced via modifications, such as the usage of carbon supports including N-doped graphene [14], active carbon [15], graphene oxide [16][17], carbon nanotubes [12][18] and covalent triazine frameworks (CTFs) [19][20]. CTFs are
  • activity of Ni/CTF-1-600-22, which means that a fraction of 22 wt % Ni is apparently more suitable than the 33 wt % in Ni/CTF-1-600-33. In the literature, Ni(OH)2/graphene oxide showed a significant enhancement of the ORR activity compared to unsupported Ni(OH)2 and graphene oxide alone. The hybrid
  • material Ni(OH)2/graphene oxide has an onset potential of −0.17 V vs Ag/AgCl for ORR, which is 80 to 100 mV more positive than the corresponding onset potentials of unsupported Ni(OH)2 (−0.25 V vs Ag/AgCl) and exfoliated graphite oxide sheets (−0.27 V vs Ag/AgCl) [64]. In another study, Ni-N/C (nickel
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • CNTs ruptured upon laser light irradiation [115]. The introduction of graphene oxide (GO) nanosheets with PDDA as multilayers caused the migration and rearrangement of chains compared to PDDA/PAA multilayers [116]. The PDDA/GO multilayers showed improved resistance to damage and maintained a defect
PDF
Album
Review
Published 27 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • (Se) edge functionalized graphene (reduced graphene oxide (rGO)) was found to undergo a direct four-electron path ORR process in alkaline medium, where rGO undergoes a two-electron path peroxide route ORR [35]. In this process, Se acts as a single atom site catalyst. In a nutshell, depending on the
  • charge transfer properties of functionalized graphene (graphene oxide (GO) or other functional derivatives of graphene) [41]. Hence the single-step method for the production of large scale, controllably functionalized graphene is of high demand, and in this work, we demonstrate such a method to control
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • , 560064, India 10.3762/bjnano.11.7 Abstract A green and facile approach has been developed for the large-scale synthesis of nanosheets of reduced graphene oxide (rGO) and nitrogenated reduced graphene oxide (N-rGO). This has been achieved by direct thermal decomposition of sucrose and glycine at 475 °C
  • hydrogen treated (H-rGO) samples. Keywords: nanosheets; nitrogenated reduced graphene oxide (N-rGO); reduced graphene oxide (rGO); supercapacitors; thermal decomposition; Introduction Graphene, the one atom thick two-dimensional material of sp2-hybridized carbon atoms has attracted much attention after
  • its discovery [1][2]. It is a fascinating material used in various applications owing to its excellent electrical, optical, mechanical and thermal properties [3][4][5]. It has a unique electronic structure with a linear dispersion of Dirac electrons. Graphene oxide (GO) and reduced graphene oxide (rGO
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • . Annealing graphene oxide (GO) in an ammonia atmosphere at 550 °C led to pyridinic N-doped graphene, while at a temperature of 850 °C graphitic nitrogen coexisted with pyridinic nitrogen, and for higher temperatures the amount of graphitic N increased. Annealing GO at 850 °C in the presence of polyaniline or
PDF
Album
Full Research Paper
Published 02 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • ]. The mesostructures are highly pH-sensitive, adopting 2D-hexagonal, wormlike or lamellar organization depending on the extent of the electrostatic complexing bonds and on the condensation rate. More complex assemblies involving ternary compositions in “Ternary nanocomposites of reduced graphene oxide
PDF
Editorial
Published 20 Dec 2019

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • of ZnFe2O4 and reduced graphene oxide (rGO) with different rGO content were prepared via a simple solvothermal method followed by a high-temperature annealing process in an inert atmosphere. The X-ray diffraction analysis confirmed that the introduction of rGO had no effect on the spinel structure of
  • ; composites; gas sensor; reduced graphene oxide (rGO); ZnFe2O4 hollow spheres; Introduction As a synthetic raw material in industrial production, acetone is chemically active and extremely flammable. It is toxic if its concentration exceeds 173 ppm, and long-term exposure to acetone poses a serious threat to
  • ][25][26][27][28]. An optimum ratio of the composition and the fine nanostructure will contribute to obtaining better gas-sensing properties. A gas sensor with 3 wt % reduced graphene oxide (rGO) incorporated into In2O3 showed a rapid response, an improved stability and a low limit of detection of NO2
PDF
Album
Full Research Paper
Published 16 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • ., single-wall carbon nanotube (SWCNT), multiwall carbon nanotube (MWCNT), graphene, graphene oxide (GO)) present a sensitive active layer exhibiting an electrical resistance change while in contact with the target gas due to interactions at the molecular level [7][8]. These interactions, depending whether
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • composite with both large surface area and high porosity for the use as advanced electrode material in lithium–sulfur batteries. Double modified defect-rich MoS2 nanosheets are successfully prepared by introducing reduced graphene oxide (rGO) and amorphous carbon. The conductibility of the cathodes can be
  • construction of other high-performance metal disulfide electrodes for electrochemical energy storage. Keywords: annealing; double modification; high-performance electrodes; lithium–sulfur battery; molybdenum disulfide (MoS2); reduced graphene oxide (rGO); Introduction Lithium–sulfur (Li–S) batteries have
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Ultrathin Ni1−xCoxS2 nanoflakes as high energy density electrode materials for asymmetric supercapacitors

  • Xiaoxiang Wang,
  • Teng Wang,
  • Rusen Zhou,
  • Lijuan Fan,
  • Shengli Zhang,
  • Feng Yu,
  • Tuquabo Tesfamichael,
  • Liwei Su and
  • Hongxia Wang

Beilstein J. Nanotechnol. 2019, 10, 2207–2216, doi:10.3762/bjnano.10.213

Graphical Abstract
  • graphene, graphene oxide (GO) or carbon nanotubes (CNTs) in order to improve the charge–discharge process stability [11][12][13]. There are limited reports regarding a comparison of the intrinsic performance between these Ni–Co chalcogenides materials. Even pure Ni–Co chalcogenide nanomaterials have been
PDF
Album
Supp Info
Full Research Paper
Published 11 Nov 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • but suffer from poor cyclic performance due to the dissolution of intermediate polysulfides. Herein, a lightweight nanoporous TiO2 and graphene oxide (GO) composite is prepared and utilized as an interlayer between a Li anode and a sulfur cathode to suppress the polysulfide migration and improve the
  • effect and the Li/S batteries with these functional interlayers deliver high gravimetric energy density and superior cyclic performance. Two-dimensional graphene oxide (GO) has excellent thermal stability, an ultrahigh specific surface area, and good electrical conductivity. The polysulfide shuttle can
  • interlayer enhanced the cycling stability and charge storage capacity of Li/S batteries due to excellent conductivity of graphene oxide and strong chemical interactions between nanoporous TiO2 and polysulfides. Results and Discussion Figure 1 presents a schematic of a Li/S battery with a TiO2/GO-coated
PDF
Album
Full Research Paper
Published 19 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • reported. Jayavel, Shrestha, and co-workers demonstrated the enhanced performance of electrochemical supercapacitors using composites of cobalt oxide nanoparticles and reduced graphene oxide, which are zero-dimensional and two-dimensional nanomaterials, respectively [86]. Leong and co-workers reported a
  • applications (by Xu, Lee, and co-workers [135]) and substrate channelling between enzymes with graphene oxide nanosheets (by Yang and co-workers [136]) can be mentioned. The nanoarchitectonics bottom-up approaches preserving the nanostructural properties are highly useful for the fabrication of low-dimensional
PDF
Album
Review
Published 30 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • graphene oxide, etc.) have been recently studied to improve the reaction performance, enhance stability and thus reduce the cost [37][38][39][40][41]. It was reported that Pt supported on these optimized catalyst supports provides higher electrocatalytical activity towards methanol oxidation and increased
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • ), carbonaceous materials (carbon nanotubes, graphene, graphene oxide, and activated carbon), layered double hydroxides, layered polysilicates (magadiite and kenyaite), and metal organic frameworks. The role of the inorganic matrices in the assembly of the semiconductor NPs [55][56][57][58][59] is: i) to control
PDF
Album
Review
Published 31 May 2019

Direct growth of few-layer graphene on AlN-based resonators for high-sensitivity gravimetric biosensors

  • Jimena Olivares,
  • Teona Mirea,
  • Lorena Gordillo-Dagallier,
  • Bruno Marco,
  • José Miguel Escolano,
  • Marta Clement and
  • Enrique Iborra

Beilstein J. Nanotechnol. 2019, 10, 975–984, doi:10.3762/bjnano.10.98

Graphical Abstract
  • porous gold films [9], owing to their outstanding properties in terms of electrical conductivity combined with their chemical stability and their ability to alter their chemistry under controlled conditions. Recently, functionalized graphene and graphene oxide have attracted the attention of the
PDF
Album
Full Research Paper
Published 29 Apr 2019

The systemic effect of PEG-nGO-induced oxidative stress in vivo in a rodent model

  • Qura Tul Ain,
  • Samina Hyder Haq,
  • Abeer Alshammari,
  • Moudhi Abdullah Al-Mutlaq and
  • Muhammad Naeem Anjum

Beilstein J. Nanotechnol. 2019, 10, 901–911, doi:10.3762/bjnano.10.91

Graphical Abstract
  • ). Graphene oxide sheets (GOS) were synthesized via a modified Hummer's method and were characterized by X-ray diffraction (XRD), ultraviolet–visible spectroscopy (UV), and transmission electron microscopy (TEM). The method of Zhang was adopted for cracking of GOS. Then nano-graphene oxide was PEGylated with
  • increased OS even after 4 h. In conclusion increased OS induced by PEG-nGO could be detrimental to brain, heart and kidneys. Keywords: nano-graphene oxide; nanomedicine; oxidative stress; PEGylation; Introduction The recent progress in nanoscience and nanotechnology that has facilitated the synthesis of
  • restricts its use for biomedical applications. Scientists have overcome this challenge through the oxidation of graphene by an improved Hummer’s method [3]. Graphene oxide (GO), due to its hydrophilic nature, can host a large number of biocompatible polymers, such as chitosan [4], polyethylene glycol (PEG
PDF
Album
Full Research Paper
Published 18 Apr 2019

Trapping polysulfide on two-dimensional molybdenum disulfide for Li–S batteries through phase selection with optimized binding

  • Sha Dong,
  • Xiaoli Sun and
  • Zhiguo Wang

Beilstein J. Nanotechnol. 2019, 10, 774–780, doi:10.3762/bjnano.10.77

Graphical Abstract
  • Mo by Re atoms [28], electron-beam irradiation [31] and hot-electron injection [32]. Recently, it was reported that MoS2/reduced graphene oxide (rGO)/S cathodes for Li–S batteries exhibit outstanding performance. X-ray photoelectron spectroscopy and Raman spectroscopy showed that few-layered MoS2 is
PDF
Album
Full Research Paper
Published 26 Mar 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • , Geelong, Vic 3216, Australia 10.3762/bjnano.10.52 Abstract In this work, a unique three-dimensional (3D) structured carbon-based composite was synthesized. In the composite, multiwalled carbon nanotubes (MWCNT) form a lattice matrix in which porous spherical reduced graphene oxide (RGO) completes the 3D
  • cathode. It was believed that a carbon-based material network with specific morphology will not only allow for a high sulfur loading but will also provide both the chemical and physical restraints on the polysulfide shuttle effect. In the previous report, we synthesized porous 3D reduced graphene oxide
  • lattice network for the composite that is supported by porous spherical reduced graphene oxide (RGO). Furthermore, the functional groups on RGO provide bonding sites for the active sulfur material. The 3D porous carbon structure enabled high sulfur loading and confined the sulfur within the 3D MWCNT
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • , we report the synthesis of novel reduced graphene oxide (rGO)-supported C3N4 nanoflake (NF) and quantum dot (QD) hybrid materials (GCN) for visible light induced reduction of CO2. The C3N4 NFs and QDs are prepared by acid treatment of C3N4 nanosheets followed by ultrasonication and hydrothermal
  • conduction band (CB) and valence band (VB) edge positions, exhibit efficient charge separation, have a large surface area, and it must be cost effective. Considering the above factors, nontoxic metal-free catalysts, such as graphitic carbon nitride (g-C3N4) and reduced graphene oxide (rGO) have received wide
  • the help of protons. Conclusion Reduced graphene oxide supported C3N4 NF and QD hybrid (GCN) materials have been successfully synthesized via a sol–gel and hydrothermal method and are characterized in this work. The formation of g-C3N4 NFs (20–45 nm) and QDs (2–3 nm) can be controlled by varying the
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • individual graphene oxide sheets” by Yue Shen and co-workers. Yue Shen won the prize for the best presentation during the E-MRS conference [12]. Electrostatic force spectroscopy (EFS) is used here to characterize the degree of reduction of uniformly reduced one-atom-thick graphene oxide (GO) sheets at the
PDF
Editorial
Published 10 Jan 2019

Wet chemistry route for the decoration of carbon nanotubes with iron oxide nanoparticles for gas sensing

  • Hussam M. Elnabawy,
  • Juan Casanova-Chafer,
  • Badawi Anis,
  • Mostafa Fedawy,
  • Mattia Scardamaglia,
  • Carla Bittencourt,
  • Ahmed S. G. Khalil,
  • Eduard Llobet and
  • Xavier Vilanova

Beilstein J. Nanotechnol. 2019, 10, 105–118, doi:10.3762/bjnano.10.10

Graphical Abstract
  • composites with other materials such as graphene oxide or polyaniline has been reported to detect NO2 [17][18]. The decoration of CNTs with iron oxide has been reported for sensing different species in air such as acetone, CO2 and some volatile organic compounds [19][20][21]. Moreover, composites made of
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019
Other Beilstein-Institut Open Science Activities