Search results

Search for "hysteresis loop" in Full Text gives 98 result(s) in Beilstein Journal of Nanotechnology.

Synthesis and catalytic application of magnetic Co–Cu nanowires

  • Lijuan Sun,
  • Xiaoyu Li,
  • Zhiqiang Xu,
  • Kenan Xie and
  • Li Liao

Beilstein J. Nanotechnol. 2017, 8, 1769–1773, doi:10.3762/bjnano.8.178

Graphical Abstract
  • replacement under an external magnetic field. The characterization results confirmed that the as-prepared product was bimetallic Co–Cu nanowires with a desirable linear structure. Additionally, the magnetic hysteresis loop showed that the bimetallic Co–Cu nanowires were paramagnetic, which meant they could be
  • because they originated from the silicon wafer substrate, PVP and H2PtCl6·6H2O, respectively. Moreover, the elemental mapping profiles (Figure 4c,d) of Co and Cu further proved the presence of Co and Cu as well as their uniform distribution patterns. The magnetic hysteresis loop of bimetallic Co–Cu
  • emu·g−1, respectively. The appearance of a hysteresis loop demonstrated that the bimetallic Co–Cu nanowires possessed paramagnetism [12]. Therefore, the bimetallic Co–Cu nanowires could be easily separated from the solution by providing an external magnetic field. Figure 5b shows the plots of evolution
PDF
Album
Letter
Published 25 Aug 2017

Near-infrared-responsive, superparamagnetic Au@Co nanochains

  • Varadee Vittur,
  • Arati G. Kolhatkar,
  • Shreya Shah,
  • Irene Rusakova,
  • Dmitri Litvinov and
  • T. Randall Lee

Beilstein J. Nanotechnol. 2017, 8, 1680–1687, doi:10.3762/bjnano.8.168

Graphical Abstract
  • stirrer. Extinction spectra of (a) Co nanoparticles and (b) Au@Co nanochains. Magnetic properties of the Au@Co nanochains: (a) zero-field-cooling (ZFC), field-cooled (FC) at 100 Oe applied field, and (b) field-dependent magnetization (M vs H) hysteresis loop. Synthesis of Au@Co nanochains
PDF
Album
Full Research Paper
Published 14 Aug 2017

Formation of ferromagnetic molecular thin films from blends by annealing

  • Peter Robaschik,
  • Ye Ma,
  • Salahud Din and
  • Sandrine Heutz

Beilstein J. Nanotechnol. 2017, 8, 1469–1475, doi:10.3762/bjnano.8.146

Graphical Abstract
  • information about the chemical composition and structure of the films. Furthermore superconducting quantum interference device (SQUID) magnetometry measurements reveal the ferromagnetic behaviour of the β-MnPc films, which exhibit remarkable coercivity. The opening of the hysteresis loop is preserved at
PDF
Album
Full Research Paper
Published 14 Jul 2017

Synthesis of [Fe(Leq)(Lax)]n coordination polymer nanoparticles using blockcopolymer micelles

  • Christoph Göbel,
  • Ottokar Klimm,
  • Florian Puchtler,
  • Sabine Rosenfeldt,
  • Stephan Förster and
  • Birgit Weber

Beilstein J. Nanotechnol. 2017, 8, 1318–1327, doi:10.3762/bjnano.8.133

Graphical Abstract
  • of the reaction time and temperature. Having a high crystallinity of the core, the SCO properties were closer to those of the bulk material (thermal hysteresis loop). We herein report the synthesis of three further coordination polymer block copolymer nanocomposites (CP–BCP) using the same synthesis
PDF
Album
Supp Info
Full Research Paper
Published 26 Jun 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • isotherms in Figure 5 belong to type IV accompanied with a hysteresis loop located at higher relative pressures [32][33]. The specific surface areas of sample A2, sample B2, sample C2 and solid TiO2 nanofibers were approximately 69.9, 48.2, 43.1 and 35.6 m2/g, respectively. It is noteworthy that the
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • IV isotherm typical of mesoporous solids. The H2 hysteresis loop is due to capillary condensation in the mesopores and is attributed to differences between condensation and evaporation processes occurring in pores with narrow necks and wide cavities often referred to as ink bottle pores. The late
PDF
Album
Full Research Paper
Published 29 Mar 2017

Fiber optic sensors based on hybrid phenyl-silica xerogel films to detect n-hexane: determination of the isosteric enthalpy of adsorption

  • Jesús C. Echeverría,
  • Ignacio Calleja,
  • Paula Moriones and
  • Julián J. Garrido

Beilstein J. Nanotechnol. 2017, 8, 475–484, doi:10.3762/bjnano.8.51

Graphical Abstract
  • common in most N2 isotherms. This phenomenon is related to the irreversible adsorption in pores with opening diameters close to the kinetic diameter of the adsorbate [25]. For the PhTEOS hybrid xerogels, the non-closure of the hysteresis loop could be associated with the presence of cage-like domains in
PDF
Album
Full Research Paper
Published 21 Feb 2017

Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications

  • Marwa Akkari,
  • Pilar Aranda,
  • Abdessalem Ben Haj Amara and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2016, 7, 1971–1982, doi:10.3762/bjnano.7.188

Graphical Abstract
  • ), obtained as described in the Experimental section [12]. The ZnO/SiO2-montmorillonite heterostructure derived from Closite® shows an type-I/II isotherm with a H3-type hysteresis loop, according to the IUPAC classification [23]. This isotherm is compared in Figure 5A with the one of the SiO2-organoclay
  • type of isotherm (type I with H4 hysteresis loop) (Figure 5B). The textural parameters calculated from these isotherms are summarized in Table 1, where they are compared to related porous materials including the SiO2-clay hetererostructures without ZnO NP and previously reported ZnO-clay
PDF
Album
Full Research Paper
Published 12 Dec 2016

Cubic chemically ordered FeRh and FeCo nanomagnets prepared by mass-selected low-energy cluster-beam deposition: a comparative study

  • Veronique Dupuis,
  • Anthony Robert,
  • Arnaud Hillion,
  • Ghassan Khadra,
  • Nils Blanc,
  • Damien Le Roy,
  • Florent Tournus,
  • Clement Albin,
  • Olivier Boisron and
  • Alexandre Tamion

Beilstein J. Nanotechnol. 2016, 7, 1850–1860, doi:10.3762/bjnano.7.177

Graphical Abstract
  • with their best fits; (b) IRM experimental data at 2 K with the corresponding biaxial contribution simulation; (c) IRM/DcD and δm curves; (d) hysteresis loop at 2 K along with the corresponding simulation. XMCD signal of as-prepared mass-selected FeCo samples at Co L2,3 edge (a) with their
PDF
Album
Full Research Paper
Published 28 Nov 2016

Antitumor magnetic hyperthermia induced by RGD-functionalized Fe3O4 nanoparticles, in an experimental model of colorectal liver metastases

  • Oihane K. Arriortua,
  • Eneko Garaio,
  • Borja Herrero de la Parte,
  • Maite Insausti,
  • Luis Lezama,
  • Fernando Plazaola,
  • Jose Angel García,
  • Jesús M. Aizpurua,
  • Maialen Sagartzazu,
  • Mireia Irazola,
  • Nestor Etxebarria,
  • Ignacio García-Alonso,
  • Alberto Saiz-López and
  • José Javier Echevarria-Uraga

Beilstein J. Nanotechnol. 2016, 7, 1532–1542, doi:10.3762/bjnano.7.147

Graphical Abstract
  • of the Fe3O4@OA sample (Figure 2). The absence of a coercive field or remanence in the hysteresis loop recorded at 300 K is indicative of a superparamagnetic behavior of the sample. The saturation magnetization value obtained from the hysteresis loops at 300 K is 78.4 emu/g Fe3O4, which slightly
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2016

Three-gradient regular solution model for simple liquids wetting complex surface topologies

  • Sabine Akerboom,
  • Marleen Kamperman and
  • Frans A. M. Leermakers

Beilstein J. Nanotechnol. 2016, 7, 1377–1396, doi:10.3762/bjnano.7.129

Graphical Abstract
  • the other dashed line). Hence in dynamical situations a hysteresis loop may be followed where the steps at the spinodal are indicated by the vertical dotted lines. The spinodal points have important roles in the advancing or receding contact line calculations (see below). Even though the van der Waals
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2016

Customized MFM probes with high lateral resolution

  • Óscar Iglesias-Freire,
  • Miriam Jaafar,
  • Eider Berganza and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2016, 7, 1068–1074, doi:10.3762/bjnano.7.100

Graphical Abstract
  • the external field and extract the intrinsic hysteresis loop of the MFM tip [25]. Typically, a large Barkhausen jump is observed with a well-defined switching field. By doing so, the measured average switching field for the 20 nm Co homemade tip is μ0∙ = (31 ± 4) mT, where a total of 30
PDF
Album
Supp Info
Full Research Paper
Published 25 Jul 2016

Synthesis of cobalt nanowires in aqueous solution under an external magnetic field

  • Xiaoyu Li,
  • Lijuan Sun,
  • Hu Wang,
  • Kenan Xie,
  • Qin Long,
  • Xuefei Lai and
  • Li Liao

Beilstein J. Nanotechnol. 2016, 7, 990–994, doi:10.3762/bjnano.7.91

Graphical Abstract
  • diffraction mottling were shown in each SAED pattern, which demonstrated that the resultant nanowires possessed crystal structure and PVP had only little impact on that. Figure 4 displays the hysteresis loop measured at room temperature under an applied magnetic field of up to 25000 Oe for the PVP-protected
  • cobalt nanowires obtained in aqueous solution under an external magnetic field of 40 mT. An expanded plot is shown in the insert for field strengths between −6000 Oe and 6000 Oe. The hysteresis loop suggested that the synthesized cobalt nanowires were ferromagnetic at room temperature, which differs from
  • nanowires prepared with PVP (c) and without PVP (d). The hysteresis loop of the PVP-protected cobalt nanowires prepared under an external magnetic field measured at room temperature. The inset shows the respective expanded plots for fields between −6000 and 6000 Oe. Acknowledgements Financial supports by
PDF
Album
Letter
Published 07 Jul 2016

Thickness dependence of the triplet spin-valve effect in superconductor–ferromagnet–ferromagnet heterostructures

  • Daniel Lenk,
  • Vladimir I. Zdravkov,
  • Jan-Michael Kehrle,
  • Günter Obermeier,
  • Aladin Ullrich,
  • Roman Morari,
  • Hans-Albrecht Krug von Nidda,
  • Claus Müller,
  • Mikhail Yu. Kupriyanov,
  • Anatolie S. Sidorenko,
  • Siegfried Horn,
  • Rafael G. Deminov,
  • Lenar R. Tagirov and
  • Reinhard Tidecks

Beilstein J. Nanotechnol. 2016, 7, 957–969, doi:10.3762/bjnano.7.88

Graphical Abstract
  • increasingly hard to evaluate, the thinner the Cu41Ni59 layer is. We should remark, that the present reconstruction of the hysteresis loop is not unambiguous. Moreover, it shows small deviations from the data, especially for the positive sweep direction around H = 0. Possibly, these deviations can be reduced
  • by the extended version of the model of Geiler and co-workers [62]. However, this requires the inclusion of three additional fit parameters per layer and sweep direction. This fact, in conjunction with the lack of clear structures in the hysteresis loop, yields mutual dependencies of the parameters
  • guide to the eye. (a) Magnetic hysteresis loop of SF1NF2-AF1#1 recorded by a SQUID magnetometer. Here, m is the magnetic moment and H the magnetic field applied parallel to the film plane. The solid line shows a reconstruction of the hysteresis loop according to the simple version of the model of Geiler
PDF
Album
Full Research Paper
Published 04 Jul 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • field in the antidot arrays. The Fe antidot array’s hysteresis loop in Figure 5 can be interpreted in a way that upon applying a small reversal field, an additional anisotropy caused by the nanostructures holds the local magnetisation in its original direction and only a small slope of the magnetisation
PDF
Album
Full Research Paper
Published 24 May 2016

Coupled molecular and cantilever dynamics model for frequency-modulated atomic force microscopy

  • Michael Klocke and
  • Dietrich E. Wolf

Beilstein J. Nanotechnol. 2016, 7, 708–720, doi:10.3762/bjnano.7.63

Graphical Abstract
  • system will go through the hysteresis loop upon retraction of the tip (as shown in Figure 5). The hysteresis is independent of the smooth, elastic deformation of the configuration, when the tip approaches the surface further before being retracted. Therefore the dissipation is independent of the closest
  • A in Figure 2. The actual minimal distance is smaller than d due to the attractive forces between tip and substrate. The trajectory shows a hysteresis loop with significant displacements in all three dimensions. As the tip starts with zero temperature, the apex coordinates first do not fluctuate
  • projection atom that undergoes a significant displacement. The hysteresis loop for the apex atom is much smaller. Another difference is the lack of lateral displacement. This can be understood by the local potential, which the apex atom sees in the rock salt structure. The (111) atomic plane (parallel to the
PDF
Album
Full Research Paper
Published 17 May 2016
Graphical Abstract
  • interesting to note that not only the steepness and the area of the dissipation hysteresis loop changes, but also the maximum attractive force (“well depth” of the curves) can vary. This is because different tip profiles lead to different proximity between the surface elements and the surface of the tip, thus
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2016

High-bandwidth multimode self-sensing in bimodal atomic force microscopy

  • Michael G. Ruppert and
  • S. O. Reza Moheimani

Beilstein J. Nanotechnol. 2016, 7, 284–295, doi:10.3762/bjnano.7.26

Graphical Abstract
  • amplitude branch as can be seen in Figure 9c and Figure 9g. It is worth noting that for this case, the fifth mode amplitudes obtained from the OBD sensor and from the charge sensor form a hysteresis loop and more significantly show inverse behavior for small separations (compare Figure 9d and Figure 9h). As
PDF
Album
Full Research Paper
Published 24 Feb 2016

Single-molecule magnet behavior in 2,2’-bipyrimidine-bridged dilanthanide complexes

  • Wen Yu,
  • Frank Schramm,
  • Eufemio Moreno Pineda,
  • Yanhua Lan,
  • Olaf Fuhr,
  • Jinjie Chen,
  • Hironari Isshiki,
  • Wolfgang Wernsdorfer,
  • Wulf Wulfhekel and
  • Mario Ruben

Beilstein J. Nanotechnol. 2016, 7, 126–137, doi:10.3762/bjnano.7.15

Graphical Abstract
  • temperature. We have studied single crystals for complexes 2, 3 and 5 at mK temperatures employing a micro-SQUID apparatus. No hysteresis loop was obtained for compounds 2 (Supporting Information File 1, Figure S5) and 5 (Supporting Information File 1, Figure S6) even down to 0.03 K. The magnetization of Er2
  • . In contrast, well-resolved two-step hysteresis loops were obtained for complex 3 (Figure 6). The width of the hysteresis loop increases with decreasing temperature and increasing sweep rate, which is characteristic of SMM behavior. The loops are very typical for two antiferromagnetically coupled
PDF
Album
Supp Info
Full Research Paper
Published 28 Jan 2016

Selective porous gates made from colloidal silica nanoparticles

  • Roberto Nisticò,
  • Paola Avetta,
  • Paola Calza,
  • Debora Fabbri,
  • Giuliana Magnacca and
  • Dominique Scalarone

Beilstein J. Nanotechnol. 2015, 6, 2105–2112, doi:10.3762/bjnano.6.215

Graphical Abstract
  • materials (see inset in Figure 3A). The N2 gas-volumetric isotherm shown in Figure 3A is of the IV type, with a small hysteresis loop of H2 type (from IUPAC classification) in the relative pressure range 0.9–1, next to the condensation limit. The BET surface area is of ca. 260 m2 g−1 and the DFT pore size
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2015

A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

  • Houcine Labiadh,
  • Tahar Ben Chaabane,
  • Romain Sibille,
  • Lavinia Balan and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2015, 6, 1743–1751, doi:10.3762/bjnano.6.178

Graphical Abstract
  • fields increased with the iron oxide layer thickness, where the highest HC value of 0.18 T was measured for Mn:ZnS/ZnS/Fe3O4 QDs (3). Thus, the nanocrystals become magnetically harder with an increasingly open hysteresis loop with increasing thickness of the magnetite shell. The values of MR and M9T
PDF
Album
Full Research Paper
Published 17 Aug 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • percentage of the viability of the control culture [48][54]. (a) TEM image of uncoated Fe3O4 nanoparticles and their (b) corresponding particle size distribution. (c) Hysteresis loop of the synthesized magnetic nanoparticles: (1) Fe3O4, (2) TMC/Fe3O4, (3) Au/TMC/Fe3O4, (4) chitosan/Fe3O4 and (5) Au/chitosan
PDF
Album
Full Research Paper
Published 03 Aug 2015

Influence of the shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron beam induced deposition

  • Luis A. Rodríguez,
  • Lorenz Deen,
  • Rosa Córdoba,
  • César Magén,
  • Etienne Snoeck,
  • Bert Koopmans and
  • José M. De Teresa

Beilstein J. Nanotechnol. 2015, 6, 1319–1331, doi:10.3762/bjnano.6.136

Graphical Abstract
  • 250 nm width and varying thickness. MOKE results. (a) Average magnetic hysteresis loop of the sample with width/nominal thickness of 250 nm/10 nm. (b) Average magnetic hysteresis loop of the sample with width/nominal thickness of 250 nm/35 nm. (c) Coercive field as a function of width for batch 1
PDF
Album
Supp Info
Full Research Paper
Published 15 Jun 2015

Tunable magnetism on the lateral mesoscale by post-processing of Co/Pt heterostructures

  • Oleksandr V. Dobrovolskiy,
  • Maksym Kompaniiets,
  • Roland Sachser,
  • Fabrizio Porrati,
  • Christian Gspan,
  • Harald Plank and
  • Michael Huth

Beilstein J. Nanotechnol. 2015, 6, 1082–1090, doi:10.3762/bjnano.6.109

Graphical Abstract
  • (H) is nearly linear from −1.5 T to 1.5 T and saturates at Hs = ±1.7 T. The U(H) curve of the Co/Pt-based sample B demonstrates two distinctive features compared to sample A: Sample B shows a noticeable hysteresis loop and its saturation field Hs is by about 30% smaller than Hs for sample A. The
  • behavior of sample B is that of ferromagnet, with a coercive field Hc of 770 Oe and a remanent-to-saturation magnetization ratio (squareness) Mr/Ms of 0.15. The irradiated Co/Pt-based sample C exhibits an even broader hysteresis loop with Hc = 850 Oe and Mr/Ms = 0.25, respectively, and its saturation field
  • Hs amounts to 1.3 T. Even though samples B and C demonstrate a hysteresis loop, we note that it is not completely open and the overall behavior of the Hall voltage curves is suggestive of a superposition of a soft and hard ferromagnetic response. We attribute these contributions to different phases
PDF
Album
Full Research Paper
Published 29 Apr 2015

Manipulation of magnetic vortex parameters in disk-on-disk nanostructures with various geometry

  • Maxim E. Stebliy,
  • Alexander G. Kolesnikov,
  • Alexey V. Ognev,
  • Alexander S. Samardak and
  • Ludmila A. Chebotkevich

Beilstein J. Nanotechnol. 2015, 6, 697–703, doi:10.3762/bjnano.6.70

Graphical Abstract
  • Ms is the saturation magnetization) and the hysteresis loop is open (Figure 1c, loop ). There are two local maxima at φ = 0 and 180° surrounded by two minima, Figure 1b. In the field, aligned at an angles 0 and 180°, the hysteresis loop has an inverted shape, i.e., Mr/Ms < 0. The maximum change of Mr
  • consider the magnetization reversal in a case when s = 0. Figure 2 shows the results of MFM study and calculated spin configurations at magnetic fields marked with numbers in the hysteresis loop (Figure 1c, loop ). With the reduction of the external field from the positive saturation, Hs (point 1), the
  • disk-on-disk system turns from a homogeneous magnetic state into the state with antiparallel magnetization due to the magnetization switching in the small disk (point 2). As can be observed, there is a step in the hysteresis loop. With further decrease of the field the magnetic vortex emerges in the
PDF
Album
Full Research Paper
Published 10 Mar 2015
Other Beilstein-Institut Open Science Activities