Search results

Search for "laser scanning microscopy" in Full Text gives 53 result(s) in Beilstein Journal of Nanotechnology.

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • , resulting in increased surface concentrations of 1.7, 3.4, and 5.1 µg Ag/cm2. Therefore, the two exposure scenarios could be compared due to similar mass deposition on the lung cells surface. Cell morphology and particle uptake The cell morphology was studied with laser scanning microscopy (LSM) (Figure 2
  • ; Sigma-Aldrich) served as positive control to induce the release of TNF-α and IL-8, respectively. Laser scanning microscopy As described in [44], the triple cell co-cultures were fixed on the cell culture insert with 3% paraformaldehyde in phosphate buffered saline (PBS) for 15 min at room temperature
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • elevated, so the snake can generate propulsion due to the interlocking of its microstructure with surface asperities. The results of the study of the snake skin’s microstructure by using atomic force microscopy (AFM) and confocal laser scanning microscopy (CLSM) showed that the anisotropic geometry of the
PDF
Album
Full Research Paper
Published 21 Jul 2014

Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects

  • Stanislav N. Gorb and
  • Alexander E. Filippov

Beilstein J. Nanotechnol. 2014, 5, 837–845, doi:10.3762/bjnano.5.95

Graphical Abstract
  • revealed by confocal laser scanning microscopy (CLSM). This gradient is hypothesized to be an evolutionary optimization enhancing adaptation of adhesive pads to rough surfaces, while simultaneously preventing setal clusterisation. Such an optimisation presumably increases the performance of the adhesive
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2014
Other Beilstein-Institut Open Science Activities