Search results

Search for "localized surface plasmon resonance (LSPR)" in Full Text gives 54 result(s) in Beilstein Journal of Nanotechnology.

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • of up to 1012 [7]. This is possible thanks to the strong electromagnetic (EM) field amplification achieved with surface plasmon resonances, especially when the field is confined in nanometric metallic structures under the form of a localized surface plasmon resonance (LSPR) [8][9][10][11][12][13][14
PDF
Album
Review
Published 28 Nov 2014

Enhanced photocatalytic activity of Ag–ZnO hybrid plasmonic nanostructures prepared by a facile wet chemical method

  • Sini Kuriakose,
  • Vandana Choudhary,
  • Biswarup Satpati and
  • Satyabrata Mohapatra

Beilstein J. Nanotechnol. 2014, 5, 639–650, doi:10.3762/bjnano.5.75

Graphical Abstract
  • of their recombination rate [19]. Secondly, noble metal nanoparticles on ZnO exhibit localized surface plasmon resonance (LSPR) absorption of light which can have significant impact on semiconductor photocatalysis. The LSPR wavelength of noble metal nanoparticles can be tuned from near UV to the
PDF
Album
Full Research Paper
Published 15 May 2014

In vitro toxicity and bioimaging studies of gold nanorods formulations coated with biofunctional thiol-PEG molecules and Pluronic block copolymers

  • Tianxun Gong,
  • Douglas Goh,
  • Malini Olivo and
  • Ken-Tye Yong

Beilstein J. Nanotechnol. 2014, 5, 546–553, doi:10.3762/bjnano.5.64

Graphical Abstract
  • important characteristics of AuNRs is that as light interacts with them, localized surface plasmon resonance (LSPR) is excited and locally oscillates around the particle [1]. LSPRs are electromagnetic modes associated with the collective oscillations of the free electrons confined to the nanoscale size
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2014

Plasmonics-based detection of H2 and CO: discrimination between reducing gases facilitated by material control

  • Gnanaprakash Dharmalingam,
  • Nicholas A. Joy,
  • Benjamin Grisafe and
  • Michael A. Carpenter

Beilstein J. Nanotechnol. 2012, 3, 712–721, doi:10.3762/bjnano.3.81

Graphical Abstract
  • fabricated through layer-by-layer physical vapor deposition (PVD). The change in the peak position of the localized surface plasmon resonance (LSPR) was monitored as a function of time and gas concentration. The responses of the films were preferential towards H2, as observed from the results of exposing the
  • observing the change in the position of the localized surface plasmon resonance (LSPR) peak. This work employs a layer-by-layer approach, meaning that the Au was first deposited and annealed to form nanoparticles and was then followed by the deposition and annealing of the YSZ capping layer. The metal-oxide
PDF
Album
Full Research Paper
Published 31 Oct 2012
Other Beilstein-Institut Open Science Activities