Search results

Search for "material properties" in Full Text gives 170 result(s) in Beilstein Journal of Nanotechnology.

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • frequency for a rectangular cantilever with homogenous material properties and no external load is given by where E is the elastic modulus, I the second moment of area, ρ the density and A the cross-sectional area of the cantilever beam. Thus, the resonance frequency depends on the properties of the
PDF
Album
Full Research Paper
Published 29 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • and the integration time was 4–10 minutes for each data point used to extract the lower critical magnetic field and the absolute value of the penetration depth. Both can be improved using other protocols in NV magnetometry. These are of some of the benefits of linking superconducting material
  • properties with theoretical models. An array of NV sensors under the diamond surface were used in [58] for the spatial mapping of band bending, where the NV sensors probe the electric field associated with the surface distribution of space charge density under different diamond surface termination. The
PDF
Album
Review
Published 04 Nov 2019

Oblique angle deposition of nickel thin films by high-power impulse magnetron sputtering

  • Hamidreza Hajihoseini,
  • Movaffaq Kateb,
  • Snorri Þorgeir Ingvarsson and
  • Jon Tomas Gudmundsson

Beilstein J. Nanotechnol. 2019, 10, 1914–1921, doi:10.3762/bjnano.10.186

Graphical Abstract
  • suppress the inclined columnar growth induced by oblique angle deposition. Thus, the ferromagnetic thin films obliquely deposited by HiPIMS deposition exhibit different magnetic properties than dcMS-deposited films. The results demonstrate the potential of the HiPIMS process to tailor the material
  • properties for some important technological applications in addition to the ability to fill high aspect ratio trenches and coating on cutting tools with complex geometries. Keywords: glancing angle deposition (GLAD); high-power impulse magnetron sputtering (HiPIMS); oblique angle deposition; magnetron
PDF
Album
Full Research Paper
Published 20 Sep 2019

The impact of crystal size and temperature on the adsorption-induced flexibility of the Zr-based metal–organic framework DUT-98

  • Simon Krause,
  • Volodymyr Bon,
  • Hongchu Du,
  • Rafal E. Dunin-Borkowski,
  • Ulrich Stoeck,
  • Irena Senkovska and
  • Stefan Kaskel

Beilstein J. Nanotechnol. 2019, 10, 1737–1744, doi:10.3762/bjnano.10.169

Graphical Abstract
  • phase remains (Supporting Information File 1, Figure S3); however, a shift of pgo towards a lower pressure is observed, indicating that the material properties change upon adsorption and desorption of various gases and vapors (Figure 2). Only few reports on the cycling behavior of flexible MOFs can be
PDF
Album
Supp Info
Full Research Paper
Published 20 Aug 2019

Subsurface imaging of flexible circuits via contact resonance atomic force microscopy

  • Wenting Wang,
  • Chengfu Ma,
  • Yuhang Chen,
  • Lei Zheng,
  • Huarong Liu and
  • Jiaru Chu

Beilstein J. Nanotechnol. 2019, 10, 1636–1647, doi:10.3762/bjnano.10.159

Graphical Abstract
  • layer under similar experimental conditions. This may be induced by the resonance frequency tracking errors in DART operation mode and also the thermal drift. Other sample properties In addition to the cover layer thickness, the influence of other sample properties, including the material properties and
  • cover thicknesses and applied forces. The scatter plots denote the experimental results and the mesh surface is constructed from theoretical calculations. Influence of thickness and material properties of each layer on subsurface imaging of the circuit pattern. (a) Theoretical stiffness contrasts for
PDF
Album
Full Research Paper
Published 07 Aug 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • Virgili (Tarragona, Spain). The preliminary results concerning this publication were discussed at Eurosensors conferences [32][33]. The present work presents a comparative study of the material properties of SnO2 devices prepared by different methods and by using ammonia as a reference gas for the
PDF
Album
Full Research Paper
Published 08 Jul 2019

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • techniques are approaching single-digit-nanometer resolution using electron emission [1] and thermal probes [2][3]. Further control of surface nanotexturing, to achieve regularly patterned features with sub-100 nm resolution, is currently under development for inherent material properties, such as
PDF
Album
Full Research Paper
Published 23 Apr 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • increasing the absorption or the area of a chemically reactive surface, a very established approach concerns bandgap engineering by varying the size and shape of nanoparticles, which enables, for instance, the optimization of the optoelectronic material properties to the solar spectrum [13]. Furthermore
PDF
Editorial
Published 26 Mar 2019

Mechanical and thermodynamic properties of Aβ42, Aβ40, and α-synuclein fibrils: a coarse-grained method to complement experimental studies

  • Adolfo B. Poma,
  • Horacio V. Guzman,
  • Mai Suan Li and
  • Panagiotis E. Theodorakis

Beilstein J. Nanotechnol. 2019, 10, 500–513, doi:10.3762/bjnano.10.51

Graphical Abstract
  • qualitatively reproduces results of experiments with biological fibrils, validating its use in extrapolation to macroscopic material properties. Our computational techniques can be used for the co-design of new experiments aiming to unveil nanomechanical properties of biological fibrils from a point of view of
PDF
Album
Full Research Paper
Published 19 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • influence on the final material properties was characterized by using physisorption analysis with nitrogen as well as carbon dioxide, X-ray diffraction, temperature-programmed oxidation (TPO), Raman spectroscopy, SEM and TEM. The results showed that this improved route allows one to greatly vary the
  • the nickel loading above 30 mgNi·g−1carbide did not change the material properties further and probably additional nickel can be seen to some extent as inert material not participating in the conversion. The new synthesis route seems to result in more homogeneous materials and allows for a better
  • control of the final material properties. Experimental Materials Commercial TiC (dave of 90 µm, 99.8%, Goodfellow) was employed as carbon precursor. Chlorine (purity 2.8, Linde AG) and hydrogen (purity 5.0, Linde AG) diluted by helium (purity 4.6, Linde AG) were used to perform reactive extraction of
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • atoms i and j, r0 is the equilibrium distance, and ζ, q, A and p are parameters that can be determined by fitting bulk material properties to experimental values. The parameters used for the results shown in this manuscript are: r0 = 2.884 Å, ζ = 1.8184 eV, A = 0.20967 eV, q = 4.03 eV and p = 10.145 eV
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • added in the reaction bath, the incorporation of some exotic metal ions in the ZnO lattice may produce some inadvertent defect levels and charge carrier recombination centers, in turn deteriorating some of the important material properties. Moreover, these reactants are responsible for changing the
PDF
Album
Full Research Paper
Published 24 Jan 2019

Scanning probe microscopy for energy-related materials

  • Rüdiger Berger,
  • Benjamin Grévin,
  • Philippe Leclère and
  • Yi Zhang

Beilstein J. Nanotechnol. 2019, 10, 132–134, doi:10.3762/bjnano.10.12

Graphical Abstract
  • , investigated and optimized. Energy-related materials often include electrochemical reactions and (opto-)electronic transport phenomena at their interfaces. In particular, material properties on the nanometer scale play a major role. The understanding of these nanoscale phenomena occurring at material
  • interfaces is therefore essential. Furthermore, these interface phenomena are strongly linked to material properties such as grain size, roughness, mechanical properties and work function. In an attempt to address the diversity of phenomena on the nanoscale, scanning probe microscopy (SPM) methods play an
PDF
Editorial
Published 10 Jan 2019

Pull-off and friction forces of micropatterned elastomers on soft substrates: the effects of pattern length scale and stiffness

  • Peter van Assenbergh,
  • Marike Fokker,
  • Julian Langowski,
  • Jan van Esch,
  • Marleen Kamperman and
  • Dimitra Dodou

Beilstein J. Nanotechnol. 2019, 10, 79–94, doi:10.3762/bjnano.10.8

Graphical Abstract
  • adhesiveness of biological micropatterned adhesives primarily relies on their geometry (e.g., feature size, architecture) and material properties (e.g., stiffness). Over the last few decades, researchers have been mimicking the geometry and material properties of biological micropatterned adhesives. The
  • performance of these biomimetic micropatterned adhesives is usually tested on hard substrates. Much less is known about the effect of geometry, feature size, and material properties on the performance of micropatterned adhesives when the substrate is deformable. Here, micropatterned adhesives of two stiffness
  • , researchers have been developing micropatterned adhesives mimicking the geometry and material properties of biological dry adhesives [1][2][3][4][5]. Pull-off and friction forces of these biomimetic adhesives rely on the formation of intimate contact with the substrates [6], enabling physical interactions
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • are elucidated, taking into account characteristics of structure and deformation mechanism. Keywords: electrochemistry; hydride formation; in situ dilatometry; internal-stress plasticity; nanoporous palladium; Introduction Material properties on the nanoscale can differ substantially from their bulk
PDF
Album
Full Research Paper
Published 10 Dec 2018

In situ characterization of nanoscale contaminations adsorbed in air using atomic force microscopy

  • Jesús S. Lacasa,
  • Lisa Almonte and
  • Jaime Colchero

Beilstein J. Nanotechnol. 2018, 9, 2925–2935, doi:10.3762/bjnano.9.271

Graphical Abstract
  • order to access material properties (“chemical information”, thus the name spectroscopy) [12]. AFM allows not only the measurement of surface topography, but also the determination of other physical characteristics; in particular electrostatic [13][14][15] and magnetic properties [16][17]. For reliable
PDF
Album
Full Research Paper
Published 23 Nov 2018

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • : bent fibers; bioinspired dry adhesives; gecko adhesion; joint-like element; mushroom-like fibers; Introduction Most natural organisms that rely on temporary adhesion to surfaces for survival do so using tiny, densely packed fibers [1][2]. These fibers vary in dimension and material properties
PDF
Album
Full Research Paper
Published 19 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • -point. Since the oscillation amplitude depends on the force between tip and sample, its variation is a direct indicator for the topography and material properties of the sample. Tools that combine both feedback loops, i.e., current and force, are
PDF
Album
Review
Published 14 Nov 2018

Evidence of friction reduction in laterally graded materials

  • Roberto Guarino,
  • Gianluca Costagliola,
  • Federico Bosia and
  • Nicola Maria Pugno

Beilstein J. Nanotechnol. 2018, 9, 2443–2456, doi:10.3762/bjnano.9.229

Graphical Abstract
  • frictional and adhesive behaviour can also be achieved by exploiting a grading of the material properties. In this paper, we investigate this possibility by considering the frictional sliding of elastic surfaces in the presence of a spatial variation of the Young’s modulus and the local friction coefficients
  • . Using finite-element simulations and a two-dimensional spring-block model, we investigate how graded material properties affect the macroscopic frictional behaviour, in particular, static friction values and the transition from static to dynamic friction. The results suggest that the graded material
  • for the following comparisons. We thus investigate the effects due to a grading of the material properties. Denoting a generic material property with φ, the corresponding linear gradient is described by: where φ0 is the reference value (i.e., relative to the non-graded system) and Δ is the maximum
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • materials used as an active sensing layer, including polymers, metal oxide semiconductors, graphene, and their composites or their functionalized forms. The material properties of these electrospun fibers and their sensing performance toward different analytes are explained in detail and correlated to the
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Electromigrated electrical optical antennas for transducing electrons and photons at the nanoscale

  • Arindam Dasgupta,
  • Mickaël Buret,
  • Nicolas Cazier,
  • Marie-Maxime Mennemanteuil,
  • Reinaldo Chacon,
  • Kamal Hammani,
  • Jean-Claude Weeber,
  • Juan Arocas,
  • Laurent Markey,
  • Gérard Colas des Francs,
  • Alexander Uskov,
  • Igor Smetanin and
  • Alexandre Bouhelier

Beilstein J. Nanotechnol. 2018, 9, 1964–1976, doi:10.3762/bjnano.9.187

Graphical Abstract
  • guide photons emitted by the junctions. For the operation at visible wavelengths waveguiding structures composed of TiO2 feature interesting material properties [60][61] such as broadband transparency, high refractive index, compatibility with complementary metal-oxide semiconductors and ease of
PDF
Album
Full Research Paper
Published 11 Jul 2018

Electrical characterization of single nanometer-wide Si fins in dense arrays

  • Steven Folkersma,
  • Janusz Bogdanowicz,
  • Andreas Schulze,
  • Paola Favia,
  • Dirch H. Petersen,
  • Ole Hansen,
  • Henrik H. Henrichsen,
  • Peter F. Nielsen,
  • Lior Shiv and
  • Wilfried Vandervorst

Beilstein J. Nanotechnol. 2018, 9, 1863–1867, doi:10.3762/bjnano.9.178

Graphical Abstract
  • , peak voltage, and material properties. Results and Discussion The experimental demonstration of using the punch-through current Ipulse to individually contact single Si fins in dense arrays is shown in Figure 2a, where the measured Rfin is plotted as a function of the fin width Wfin after using a high
PDF
Album
Full Research Paper
Published 25 Jun 2018

Induced smectic phase in binary mixtures of twist-bend nematogens

  • Anamarija Knežević,
  • Irena Dokli,
  • Marin Sapunar,
  • Suzana Šegota,
  • Ute Baumeister and
  • Andreja Lesac

Beilstein J. Nanotechnol. 2018, 9, 1297–1307, doi:10.3762/bjnano.9.122

Graphical Abstract
  • , Croatia Institute of Chemistry, Physical Chemistry, Martin Luther University Halle-Wittenberg, von-Danckelmann-Platz 4, 06120 Halle, Germany 10.3762/bjnano.9.122 Abstract The investigation of liquid crystal (LC) mixtures is of great interest in tailoring material properties for specific applications. The
  • a wide operating temperature range or tailoring material properties for specific applications. The recent discovery of the twist-bend nematic phase (NTB) [2][3] has sparked a great interest in the scientific community, not only from the fundamental viewpoint but also due to its potential for
PDF
Album
Supp Info
Full Research Paper
Published 26 Apr 2018

Imaging of viscoelastic soft matter with small indentation using higher eigenmodes in single-eigenmode amplitude-modulation atomic force microscopy

  • Miead Nikfarjam,
  • Enrique A. López-Guerra,
  • Santiago D. Solares and
  • Babak Eslami

Beilstein J. Nanotechnol. 2018, 9, 1116–1122, doi:10.3762/bjnano.9.103

Graphical Abstract
  • in tip geometry, and differences in surface material properties. Conclusion As stated in the Introduction, we have focused on the simple concept of the key competing effects governing tip–sample indentation in the characterization of soft viscoelastic materials, providing qualitative mathematics that
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2018

Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique

  • Vladimir N. Popok,
  • Cesarino M. Jeppesen,
  • Peter Fojan,
  • Anna Kuzminova,
  • Jan Hanuš and
  • Ondřej Kylián

Beilstein J. Nanotechnol. 2018, 9, 861–869, doi:10.3762/bjnano.9.80

Graphical Abstract
  • technique and the material properties as well as on the comparison of bactericidal efficiency of the prepared composites with either TiOx or Cu NPs against E.coli bacteria as a model microorganism. Results and Discussion Morphology and composition of deposited clusters Copper cluster are deposited from the
PDF
Album
Supp Info
Full Research Paper
Published 12 Mar 2018
Other Beilstein-Institut Open Science Activities