Search results

Search for "precursor" in Full Text gives 584 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • electron beam with an organometallic target (e.g., focused electron beam-induced deposition, FEBID) is a promising technique for direct 3D deposition of high-purity materials with minimum residual carbon in the product on the surface [4][5]. The FEBID precursor molecules adsorb and diffuse on the surface
  • these two species, the interaction of slow electrons with the metal chelates also produces a rich variety of fragment anions, which are reported and discussed in the present report. A comprehensive picture of the fragmentation pattern of each ML2 precursor, including the quantification of dissociation
  • incoming scattering electron is captured by the precursor molecule to form a transient negative ion, TNI or [ML2]#−. If the electron autodetachment time of the TNI is longer than the dissociation time, the transient anion undergoes dissociation into a negative fragment and one or more neutral counterpart(s
PDF
Album
Full Research Paper
Published 26 Sep 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • precursor for diffusion doping of wafers and as anode material for Li-ion batteries. A similar method with a hydrogenation step offers the possibility to obtain other compounds, such as silicon selenides, arsenides, and sulfides. Keywords: ampoule annealing; defective zinc blende structure; DFT
  • Si3P4 phase. Also worth noting was that the synthesis of cubic Si3P4 NPs could be performed immediately after laser-induced or plasma-enhanced chemical vapor deposition of nanosilicon from the silane precursor (since the NPs obtained this way are readily hydrogenated). Additionally, there is preliminary
  • (reagent grade) were used for sol preparation; 40% hydrofluoric acid (pure) was used for etching. Si NPs were synthesized by laser-induced chemical vapor deposition using a silane precursor (the average particle diameter was 20 nm [41]). The NPs oxidized when stored in air, and the resultant mass fraction
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Low temperature atomic layer deposition of cobalt using dicobalt hexacarbonyl-1-heptyne as precursor

  • Mathias Franz,
  • Mahnaz Safian Jouzdani,
  • Lysann Kaßner,
  • Marcus Daniel,
  • Frank Stahr and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2023, 14, 951–963, doi:10.3762/bjnano.14.78

Graphical Abstract
  • operates at low temperatures using dicobalt hexacarbonyl-1-heptyne [Co2(CO)6HC≡CC5H11] and hydrogen plasma. For this precursor an ALD window in the temperature range between 50 and 110 °C was determined with a constant deposition rate of approximately 0.1 Å/cycle. The upper limit of the ALD window is
  • defined by the onset of the decomposition of the precursor. In our case, decomposition occurs at temperatures of 125 °C and above, resulting in a film growth in chemical vapour deposition mode. The lower limit of the ALD window is around 35 °C, where the reduction of the precursor is incomplete. The
  • for the deposition of metallic cobalt including twelve plasma-assisted processes. Generally, these plasma-assisted ALD processes are reported to be carried out at temperatures above 100 °C. These processes use precursors such as CoCp2, Co(EtCp)2, or CpCo(CO)2 [12][13][14]. The commonly used precursor
PDF
Album
Supp Info
Full Research Paper
Published 15 Sep 2023

N-Heterocyclic carbene-based gold etchants

  • Robert B. Chevalier,
  • Justin Pantano,
  • Matthew K. Kiesewetter and
  • Jason R. Dwyer

Beilstein J. Nanotechnol. 2023, 14, 865–871, doi:10.3762/bjnano.14.71

Graphical Abstract
  • two different solution-based surface functionalization routes. One involved the deprotonation of a benzimidazolium precursor in toluene under air-free conditions. The other was in methanol and took advantage of the equilibrium between a benzimidazolium hydrogen carbonate salt and free carbene with
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2023

Silver-based SERS substrates fabricated using a 3D printed microfluidic device

  • Phommachith Sonexai,
  • Minh Van Nguyen,
  • Bui The Huy and
  • Yong-Ill Lee

Beilstein J. Nanotechnol. 2023, 14, 793–803, doi:10.3762/bjnano.14.65

Graphical Abstract
  • tool for detecting ultralow concentrations of chemical compounds and biomolecules. We present a reproducible method for producing Ag nanoparticles that can be used to create highly sensitive SERS substrates. A microfluidic device was employed to confine the precursor reagents within the droplets
  • method limits the amount of precursor chemicals and enables the sequential flow of droplets, resulting in silver nanoparticles of uniform shape and size. We investigated the effects of different synthesis conditions on the size distribution, dispersity, and LSPR wavelength of the silver nanoparticles
PDF
Album
Supp Info
Full Research Paper
Published 21 Jul 2023

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • GeO2 and biomass-derived carbon as precursor. A series of experiments using other methods to combine Ge and biomass carbon was also conducted for comparison. The in situ synthesized electrode exhibits superior electrochemical performance in lithium storage. This is attributed to a better contact
  • Fd−3m, JCPDS card No. 04-0545). There is no observable signal related to the GeO2 precursor. The XRD pattern of the BC-800 carbon material exhibits a diffraction signal at 2θ = 26.3° attributed to the (002) plane of disordered graphite-like carbon. The peaks at 2θ = 28.1° and 44.0° correspond to the
  • out according to our previous work [33]. Ge and BC-800 at a mass ratio of 2:5 (approximate to that estimated from the Ge/C-750 precursor) were added to a mixture of ethanol and DI water at a ratio of 1:1 (v/v). The dispersion was well stirred in a Teflon beaker, transferred into an autoclave, and held
PDF
Album
Full Research Paper
Published 26 Jun 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • values shows stable growth regions that yield CNTs of the same morphology. The identified regions are likely to share a common distribution of temperature and precursor concentration (scalar) that is favorable for the formation of CNTs. Although the scalar distribution could vary the formation rate
PDF
Album
Full Research Paper
Published 21 Jun 2023

Cross-sectional Kelvin probe force microscopy on III–V epitaxial multilayer stacks: challenges and perspectives

  • Mattia da Lisca,
  • José Alvarez,
  • James P. Connolly,
  • Nicolas Vaissiere,
  • Karim Mekhazni,
  • Jean Decobert and
  • Jean-Paul Kleider

Beilstein J. Nanotechnol. 2023, 14, 725–737, doi:10.3762/bjnano.14.59

Graphical Abstract
  • ), and arsine (AsH3) were the source materials, with hydrogen (H2) as a carrier gas. Diethylzinc (DEZn) was used as a source of Zn for p-type doping the InP:Zn and the phosphorus-based quaternary (GaInAsP:Zn) and GaInAs:Zn layers. The precursor flow was varied to cover a doping level range from 1 × 1018
PDF
Album
Full Research Paper
Published 14 Jun 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • hydrothermal process with glucose as a precursor undergoing carbonization. Different spectroscopic techniques were used to analyze the optical characteristics of GQDs, including UV–visible, photoluminescence, FTIR, and Raman spectroscopy. Atomic force microscopy, transmission electron microscopy, and X-ray
  • organophosphate pesticide malathion. Graphene quantum dots were synthesized hydrothermally using glucose as precursor. The glassy carbon electrode that served as working electrode in the electrochemical cell was modified with graphene quantum dots by drop casting. To evaluate the modified electrode’s oxidation
  • were taken from Fisher Scientific. For all experimental work and the preparation of stock solutions, deionized (DI) water was used. Synthesis of graphene quantum dots Graphene quantum dots (GQDs) were synthesized using glucose as a precursor material via a hydrothermal route [29] with some
PDF
Album
Full Research Paper
Published 09 Jun 2023

Titania nanoparticles for photocatalytic degradation of ethanol under simulated solar light

  • Evghenii Goncearenco,
  • Iuliana P. Morjan,
  • Claudiu Teodor Fleaca,
  • Florian Dumitrache,
  • Elena Dutu,
  • Monica Scarisoreanu,
  • Valentin Serban Teodorescu,
  • Alexandra Sandulescu,
  • Crina Anastasescu and
  • Ioan Balint

Beilstein J. Nanotechnol. 2023, 14, 616–630, doi:10.3762/bjnano.14.51

Graphical Abstract
  • ) that yield the highest photocatalytic decomposition of ethanol as harmful compound in gaseous or liquid media, that is air and wastewater. Results and Discussion Powder characterization The main chemical reaction of the TiCl4 precursor in laser pyrolysis in the presence of synthetic air can be
  • . Ethylene was used to absorb the infrared laser radiation and transfer the energy to the precursor molecules, thus playing the role of a sensitizer. The reaction took place in the volume delimited by the orthogonally intersection of the laser beam with the precursor flow (Figure 12). The precursors were
  • injected through the central nozzle. The reactive flow was a mixture of synthetic air (Siad 99.99% purity) as oxidizer, C2H4 (Siad 99.5% purity) as sensitizer, and TiCl4 vapor (Aldrich 98% purity) as Ti precursor. Synthetic air was used as carrier of gaseous TiCl4 from a liquid reservoir (via a bubbler
PDF
Album
Full Research Paper
Published 22 May 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • , which has been rarely investigated before. Herein, we describe a new strategy for preparing ternary hybrids (SiC@C-ZnO, SCZ) by growing ZnO particles on carbon surfaces derived from SiC nanowires. The influence of ZnO precursor (ZnNO3·6H2O) dosage on composition, microstructure and electromagnetic
  • . Figure 5 shows that the increase of the dosage of ZnNO3·6H2O does not lead to an increased dielectric tangent loss, suggesting that a moderate content of ZnO precursor is needed to synthesize SiC@C-ZnO with relatively good dielectric performance for microwave absorption. Although the SCZ0.5 sample has
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • various issues regarding the replacement of toxic precursor components and by-products by non-toxic substances in order to improve viability and/or growth of the entrapped cells. In fact, new organic, inorganic, and hybrid materials for cell entrapment need to be optimised regarding characteristics such
  • adapting the protocol previously described by Rooke and co-workers [41]. The synthesis conditions were optimised regarding concentration of sodium silicate precursor, temperature, and content of silica nanoparticles (LUDOX® TMA), using a combinatorial exploration of the different synthesis parameters
  • precursor could be cast and gelled as thin films or hollow tubular monoliths with thin walls, improving the interaction between the encapsulated cells and a liquid medium in which the material could be placed. In addition to the optimisation of the sol–gel synthesis, the conditions for yolk–shell
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Mixed oxides with corundum-type structure obtained from recycling can seals as paint pigments: color stability

  • Dienifer F. L. Horsth,
  • Julia de O. Primo,
  • Nayara Balaba,
  • Fauze J. Anaissi and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 467–477, doi:10.3762/bjnano.14.37

Graphical Abstract
  • interests to produce synthetic inorganic pigments [1] using metallic aluminium scrap as precursor to obtain a white matrix that can then be colored by chromophore ions as an approach within the circular economy of aluminium [1]. Aluminium production has one of the most significant energy consumption
  • atmospheres than organic pigments [12]. In addition, inorganic pigments offer the advantage of lower production cost [12] when using recycling materials as a precursor. Global demand for pigments was around 12 million tons in 2020 and is dominated by titanium dioxide white pigment [11]. However, iron oxide
  • boehmite (γ-AlO(OH)) obtained from recycling aluminium can seals as a precursor. The boehmite phase was chosen because it is a lamellar phase and can allocate ions between the lamellas. The aluminium recycling process to obtain boehmite is based on the acid digestion of metallic aluminium can seals. After
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • molecular structures. Kawai et al. reported that local probe chemistry on an ultrathin NaCl film formed on a Cu(111) surface at 4.3 K led to the conversion of 6,13-dibromopentaleno[1,2-b:4,5-b′]dinaphthalene to a single Sondheimer–Wong diyne (Figure 3) [114]. The structures of the precursor, two
  • -workers used 1,4,5,8-tetrabromonaphthalene as a molecular precursor and sequential dehalogenation reactions under mild conditions to synthesize very thin (five carbon atoms wide) armchair graphene nanoribbons on a Au(111) surface [122]. The spatial distribution of the electronic structure and other
  • properties were investigated. Müllen, Fasel, and co-workers have succeeded in nanoarchitectonics of graphene nanoribbons with zigzag edges with atomic precision by on-surface synthesis via cyclodehydrogenation of precursor monomers [123]. The physical properties of the graphene nanoribbons, such as band
PDF
Album
Review
Published 03 Apr 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • phase, but it is always smaller (ca. 25 nm from TEM) than the precursor nanoemulsion droplets, regardless of the PLGA concentration. DXM can be encapsulated with efficiencies higher than 88% for PLGA concentrations in the 0.5–4 wt % range. The drug release kinetics seems to be slower as the PLGA
  • concentration in the precursor nanoemulsions is increased. Cell viabilities (HeLa cells) were higher than 70% when incubated with non-loaded and DXM-loaded PLGA nanoparticles. PLGA nanoparticles have been also produced from nonionic/cationic surfactant nanoemulsions, specifically in the system water
PDF
Album
Review
Published 13 Mar 2023

Biocatalytic synthesis and ordered self-assembly of silica nanoparticles via a silica-binding peptide

  • Mustafa Gungormus

Beilstein J. Nanotechnol. 2023, 14, 280–290, doi:10.3762/bjnano.14.25

Graphical Abstract
  • demonstrate that the SiBP acts as a multirole agent when used alone or in combination with a strong base catalyst (NH3). When used alone, SiBP catalyzes the hydrolysis of precursor molecules in a dose-dependent manner and produces 17–20 nm SiO2 particles organized in colloidal gels. When used in combination
  • (arginine) amino acids. The hypotheses of this study were as follows: (1) The basic serine and arginine residues in the SiBP can facilitate hydrolysis of the precursor molecules and, thus, catalyze the synthesis of SiO2 particles. (2) The affinity of the SiBP to SiO2 can narrow down the size distribution of
  • stabilizes the favorable orientation of histidine. Then a nucleophilic attack by serine on the Si–O bond of the precursor molecule results in a Ser–O–Si(OR)3 transitory complex. The hydrolysis is completed by the addition of water, separating the protein and the hydrolyzed precursor molecule, and the release
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2023

Structural, optical, and bioimaging characterization of carbon quantum dots solvothermally synthesized from o-phenylenediamine

  • Zoran M. Marković,
  • Milica D. Budimir,
  • Martin Danko,
  • Dušan D. Milivojević,
  • Pavel Kubat,
  • Danica Z. Zmejkoski,
  • Vladimir B. Pavlović,
  • Marija M. Mojsin,
  • Milena J. Stevanović and
  • Biljana M. Todorović Marković

Beilstein J. Nanotechnol. 2023, 14, 165–174, doi:10.3762/bjnano.14.17

Graphical Abstract
  • characterization methods (AFM, TEM, EDS, FTIR, photoluminescence, and EPR) indicate the significant influence of the precursor on structural, chemical, and optical properties. Antibacterial and cytotoxicity tests showed that these dots did not have any antibacterial potential, because of the low extent of reactive
  • oxygen species production, and showed low dark cytotoxicity. By investigating the cellular uptake, it was established that these dots penetrated the HeLa cells and could be used as probes for bioimaging. Keywords: antibacterial; bioimaging; carbon quantum dots; precursor; reactive oxygen species
  • activity including the usage in wound healing [24]. Different authors prepared CQDs by using various precursors and reported on their excellent antibacterial activity and good biocompatibility [25][26][27][28][29]. In this study o-phenylenediamine dissolved in toluene was used as precursor for CQDs
PDF
Album
Supp Info
Full Research Paper
Published 30 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • photoinduced approach was investigated for textile functionalization with a silver@polymer self-assembled nanocomposite. By exposing the photosensitive formulation containing a silver precursor, a photoinitiator, and acrylic monomers to a UV source, highly reflective metallic coatings were obtained directly on
  • difficult to implement and tend to cause NP self-aggregation. In situ methods are therefore generally preferred and typically require the polymer film surface to be treated with a metal precursor solution (layer-by-layer [37][38], sol–gel [39]) before undergoing thermal [40] or chemical reduction reactions
  • (PEG600DA) and pentaerythritol triacrylate monomer (PETIA) used as comonomer (PEG600DA/PETIA with a 1:1 weight ratio) were mixed under magnetic stirring with diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide (0.5 wt %) and the metal precursor AgNO3 (3 wt % and 5 wt %) for 1 h. After complete dissolution, this
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • resulting signal intensity tends to strongly vary due to surface contamination [30]. In this paper, a simple synthesis method to design bimodal porous silver substrate for SERS is reported. Magnetron co-sputtering of a silver and aluminum target was used for the deposition of the precursor alloy thin film
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Two-step single-reactor synthesis of oleic acid- or undecylenic acid-stabilized magnetic nanoparticles by thermal decomposition

  • Mykhailo Nahorniak,
  • Pamela Pasetto,
  • Jean-Marc Greneche,
  • Volodymyr Samaryk,
  • Sandy Auguste,
  • Anthony Rousseau,
  • Nataliya Nosova and
  • Serhii Varvarenko

Beilstein J. Nanotechnol. 2023, 14, 11–22, doi:10.3762/bjnano.14.2

Graphical Abstract
  • single reactor using Fe(III) acetylacetonate as the initial precursor for the synthesis of Fe(III) oleate or Fe(III) undecylate followed by their thermolysis in situ. We proposed a new approach, according to which the essential magnetite precursor (a complex salt of higher acids – Fe(III) alkanoates) is
  • as the initial precursor. The properties of the synthesized materials were studied using various methods. Results and Discussion The physicochemical properties of NPM synthesized via thermal decomposition depend on many factors, such as selection of precursors and organic stabilizers, ligand
  • /precursor ratio, solvent, and temperature of the decomposition reaction. Table 1 shows the results of synthesized nanoparticles obtained by variation of solvents and stabilizing agents. All prepared dispersions of the nanoparticles were initially black but slowly turned reddish upon exposure to air [15
PDF
Album
Supp Info
Full Research Paper
Published 03 Jan 2023

Single-step extraction of small-diameter single-walled carbon nanotubes in the presence of riboflavin

  • Polina M. Kalachikova,
  • Anastasia E. Goldt,
  • Eldar M. Khabushev,
  • Timofei V. Eremin,
  • Timofei S. Zatsepin,
  • Elena D. Obraztsova,
  • Konstantin V. Larionov,
  • Liubov Yu. Antipina,
  • Pavel B. Sorokin and
  • Albert G. Nasibulin

Beilstein J. Nanotechnol. 2022, 13, 1564–1571, doi:10.3762/bjnano.13.130

Graphical Abstract
  • another class of biomolecules that can be potentially utilized as a surfactant for dispersing SWCNTs. Having relatively low solubility in water, flavins are generally innocuous for living cells. Riboflavin (also known as vitamin B2) is a precursor of such coenzymes as flavin mononucleotide phosphate and
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2022

In search of cytotoxic selectivity on cancer cells with biogenically synthesized Ag/AgCl nanoparticles

  • Mitzi J. Ramírez-Hernández,
  • Mario Valera-Zaragoza,
  • Omar Viñas-Bravo,
  • Ariana A. Huerta-Heredia,
  • Miguel A. Peña-Rico,
  • Erick A. Juarez-Arellano,
  • David Paniagua-Vega,
  • Eduardo Ramírez-Vargas and
  • Saúl Sánchez-Valdes

Beilstein J. Nanotechnol. 2022, 13, 1505–1519, doi:10.3762/bjnano.13.124

Graphical Abstract
  • antibacterial abilities of AgNPs synthesized from pineapple peel. They demonstrated the formation of spherical AgNPs with an average size of 14–20 nm by monitoring the pH values of the reaction and the concentration ratio between the precursor and the extract. Baran et al. [16] investigated the antibacterial
  • temperature [22][23][24]. In this way, the ability of secondary metabolites of plant extracts to reduce precursor metal salts to particles with zero charge, and at the same time stabilize nanoparticles already formed, has been demonstrated. Despite this, the phenomenon of interaction of the chemical species
  • of the extracts with the precursor salt could be enhanced depending on the temperature, since the kinetic and thermodynamic effects in the reaction system could be maximized [25]. Consequently, the formation of nanoparticles could be faster or more efficient in terms of size and shape of the
PDF
Album
Full Research Paper
Published 13 Dec 2022

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • . Cobalt and lithium acetate salts were dissolved separately in small amounts of deionized water. Then, the solutions were mixed together and a solution of ᴅ-(+)-glucose was added. The prepared solutions were then evaporated until a gel was obtained. The resulting gel precursor was heated from 450 to 900
PDF
Album
Full Research Paper
Published 07 Dec 2022

Recent trends in Bi-based nanomaterials: challenges, fabrication, enhancement techniques, and environmental applications

  • Vishal Dutta,
  • Ankush Chauhan,
  • Ritesh Verma,
  • C. Gopalkrishnan and
  • Van-Huy Nguyen

Beilstein J. Nanotechnol. 2022, 13, 1316–1336, doi:10.3762/bjnano.13.109

Graphical Abstract
  • visible light. Xiao and colleagues have shown a straightforward synthesis approach for fabricating Bi2WO6 nanosheet rods [65]. They discovered that the hydrolysis of the precursor Bi(NO3)3 may quickly result in the formation of Bi6O5(OH)3(NO3)5·3H2O nanorods, which then acted as templates for the
  • simple hydrothermal synthesis for preparing 2D BiOCl nanosheets [83]. This was accomplished by altering the pH value of the precursor solution and using of dulcitol (C6H14O6) as surfactant. The pH value substantially influenced the thickness of the nanosheets and the fraction of exposed (001) facets. The
  • photodegradation of RhB under visible light. Their research also revealed that 15% SnO2 precursor solution was the most effective concentration for achieving a photocatalytic degradation efficiency of 80% after 180 min of exposure to visible light. Photogenerated holes were found to be responsible for the
PDF
Album
Review
Published 11 Nov 2022
Other Beilstein-Institut Open Science Activities