Search results

Search for "van der Waals" in Full Text gives 341 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • properties of the monolayers shows that the interlayer van der Waals forces can slightly weaken the TM–X covalent bonding strength, which can further influence the mechanical properties. These insights revealed by our theoretical studies may boost more applications of 1T′ TMD materials. Keywords: 1T
  • comparatively weak van der Waals (vdW) interactions [7]. The most extensively studied TMDs, including MoS2, MoSe2, WS2, and WSe2, can display different structural polytypes (e.g., 2H, 3R, 1T, and 1T′) [8]. Previous studies have revealed that the structures significantly affected the properties and physical
  • of 520 eV was employed to expand the smooth part of the wave function. Since traditional DFT calculations at the GGA level cannot correctly include the nonlocal van der Waals interactions [39][40][41][42], the DFT‐D3 approach was applied in this study to consider the influence of the van der Waals
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Topographic signatures and manipulations of Fe atoms, CO molecules and NaCl islands on superconducting Pb(111)

  • Carl Drechsel,
  • Philipp D’Astolfo,
  • Jung-Ching Liu,
  • Thilo Glatzel,
  • Rémy Pawlak and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2022, 13, 1–9, doi:10.3762/bjnano.13.1

Graphical Abstract
  • realization of MZMs in two dimensions has been also observed in vortex cores on a proximitized topological insulator surface [19][20], in iron-based superconductors [7][21][22] or hybrid van der Waals heterostructures [23]. The fingerprint for MZMs in conductance measurements through the nanowire or in
PDF
Album
Letter
Published 03 Jan 2022

Two dynamic modes to streamline challenging atomic force microscopy measurements

  • Alexei G. Temiryazev,
  • Andrey V. Krayev and
  • Marina P. Temiryazeva

Beilstein J. Nanotechnol. 2021, 12, 1226–1236, doi:10.3762/bjnano.12.90

Graphical Abstract
  • enough from the surface so that the van der Waals forces are negligible. The driving power is selected such that it provides a certain initial amplitude A0 of the probe oscillations (also far from the surface). This value is often called the amplitude of free oscillations. Next, we need to select a set
  • . As the probe approaches the surface, its resonant frequency first shifts downward under the action of attractive forces (e.g., van der Waals forces or capillary forces), and then increases when repulsive forces become dominant (Figure 1b). In AM-AFM, the driving frequency is fixed and is equal to the
  • the next measurement point. The VM does not imply separation with the surface, the probe is within the range of van der Waals forces almost all the time. Due to this, the scanning speed in flat areas increases significantly. We can consider the VM as a kind of feedback that during lateral movement
PDF
Album
Supp Info
Full Research Paper
Published 15 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • is the angle force constant, and the sigmoid function describes the effect of bond breakage. Here, with r0 being the equilibrium distance between two atoms involved in the angular interaction and being the van der Waals radius for those atoms. In the case study considered, the initial geometry of a
  • means of IDMD [13][15], the fully hydroxylated SiO2 substrate is fixed in space in the course of simulations to speed up the simulations. The interaction between the ideal SiO2-H surface and adsorbed Pt-containing precursor molecules and fragments is governed by weak van der Waals bonding, which agrees
  • with the results of [31]. The van der Waals forces between the atoms of the substrate and the adsorbed molecules are described by means of the Lennard-Jones potential: where and . Note that partial hydroxylation, surface defects, and broken O–H bonds may lead to a stronger interaction between Pt and
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • -ordered structures from a complex mixture via noncovalent interactions, including van der Waals forces, electrostatic forces, hydrogen bonds, and stacking interactions [12][13]. Importantly, biomolecules, such as proteins, peptides, or biologically derived molecules, including de novo designed peptides or
  • ordered nanostructures through noncovalent interactions, including electrostatic, π–π stacking, van der Waals, and hydrophobic interactions. The self-assembly of single amino acids has the advantages of low synthesis cost, relatively easy modeling [27], and excellent biocompatibility and biodegradability
  • and molecular forces play a key role in self-assembly, including hydrogen bonds, hydrophobic bonds, van der Waals force, ionic bonds, π–π stacking, and electrostatic forces [31]. Importantly, amino acids are simple building blocks that provide relevant noncovalent interactions to construct complex
PDF
Album
Review
Published 12 Oct 2021

Open-loop amplitude-modulation Kelvin probe force microscopy operated in single-pass PeakForce tapping mode

  • Gheorghe Stan and
  • Pradeep Namboodiri

Beilstein J. Nanotechnol. 2021, 12, 1115–1126, doi:10.3762/bjnano.12.83

Graphical Abstract
  • the proximity of the surface, might inadvertently include contributions from the van der Waals tip–sample interaction to the measured CPD. In the current OL KPFM-PFT implementation, all these impediments are avoided by precisely controlling the synchronization of the bias modulation with the PFT
PDF
Album
Full Research Paper
Published 06 Oct 2021

Criteria ruling particle agglomeration

  • Dieter Vollath

Beilstein J. Nanotechnol. 2021, 12, 1093–1100, doi:10.3762/bjnano.12.81

Graphical Abstract
  • direction of a minimum of the free enthalpy. In this context, one may observe mechanisms leading to a reduction of the surface energy or controlled by the van der Waals interaction. Additionally, the ensemble may arrange in the direction of a maximum of the entropy. Simulations based on Monte Carlo methods
  • of an agglomerated ensemble, that is, an exponential function characterized by two parameters. In this context, it is important to realize that one has to take care of fluctuations of the entropy. Keywords: agglomeration; enthalpy; entropy; simulation; surface energy; van der Waals interaction
  • particles is relatively small. One of the possibilities for the exchange of energy between particles could be the van der Waals interaction. However, for particles touching each other, the van der Waals energy is not properly defined [11]. Since the real arrangement of the particles in a cluster is not
PDF
Album
Full Research Paper
Published 29 Sep 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • with ethylene glycol or polyethylene glycol as solvent [29][30]. The authors reasoned the cleavage at the particle tips by weak van der Waals forces between (Sb4S6)n chains, of which the particles consisted, or by strongly bound ligands interfering with the crystal growth, respectively. However, as
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • substrate and the organic building blocks. Recently, two-dimensional (2D) materials, including hexagonal boron nitride (hBN) [22][23], graphene [24][25][26][27], and MoS2 [28], have emerged as monatomically thin decoupling layers. Van der Waals 2D materials are generally well suited due to their chemical
  • applications [78], 2D materials, on the other hand, offer an alternative way for decoupling molecular structures from metal substrates [24]. 2D van der Waals materials are generally inert and therefore, are potentially well suited for physical decoupling of molecular structures. However, moiré patterns present
PDF
Editorial
Published 23 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • crystals (van der Waals heterostructures, graphene, hBN, MoS2, and WTe2) was demonstrated. The detection algorithm enables real-time detection of the 2D materials (running for 200 ms on a 1024 × 1024 optical image) and is insensitive to variations in microscopy conditions such as illumination and color
PDF
Album
Review
Published 13 Aug 2021

Effects of temperature and repeat layer spacing on mechanical properties of graphene/polycrystalline copper nanolaminated composites under shear loading

  • Chia-Wei Huang,
  • Man-Ping Chang and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2021, 12, 863–877, doi:10.3762/bjnano.12.65

Graphical Abstract
  • properties in various fields, such as supercapacitors, integrated electrodes, catalysis, and sensors [10][11][12][13]. Furthermore, the interaction between graphene and matrix materials directly affects the mechanical properties of composites [14]. The van der Waals force between graphene and metals can
PDF
Album
Full Research Paper
Published 12 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Physical constraints lead to parallel evolution of micro- and nanostructures of animal adhesive pads: a review

  • Thies H. Büscher and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2021, 12, 725–743, doi:10.3762/bjnano.12.57

Graphical Abstract
  • released out of the contact into the gaps between the outgrowths. The non-ideal smooth surface of the pad, similar to a tyre profile, prevents aquaplaning and enhances solid–solid interactions which are not only important for adhesion enhancement, due to van der Waals forces, but also for friction
  • . N. Gorb, Copyright 2001 Springer Nature. This content is not subject to CC BY 4.0). The systems, situated above the solid horizontal line, preferably rely on van der Waals forces (dry adhesion), whereas the rest rely mostly on capillary and viscous forces (wet adhesion). Convergent evolution of an
PDF
Album
Review
Published 15 Jul 2021

Prediction of Co and Ru nanocluster morphology on 2D MoS2 from interaction energies

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2021, 12, 704–724, doi:10.3762/bjnano.12.56

Graphical Abstract
  • made up of two layers. To create the pristine ML one of these was removed, which also creates the vacuum necessary to avoid interaction along the z-axis; the vacuum region is 8 Å. A (5 × 5) super cell was used. No van der Waals (vdW) corrections were applied, as both the literature and our own tests
PDF
Album
Supp Info
Full Research Paper
Published 14 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • piezoelectricity has been patterned into multilayered MoTe2 [56]. In the case of helium ion irradiation of a bulk van der Waals layered ferroelectric semiconductor crystal (CuInP2S6), local volume expansion due to helium ion implantation was observed, forming a conical surface topography within which for
PDF
Album
Review
Published 02 Jul 2021

Properties of graphene deposited on GaN nanowires: influence of nanowire roughness, self-induced nanogating and defects

  • Jakub Kierdaszuk,
  • Piotr Kaźmierczak,
  • Justyna Grzonka,
  • Aleksandra Krajewska,
  • Aleksandra Przewłoka,
  • Wawrzyniec Kaszub,
  • Zbigniew R. Zytkiewicz,
  • Marta Sobanska,
  • Maria Kamińska,
  • Andrzej Wysmołek and
  • Aneta Drabińska

Beilstein J. Nanotechnol. 2021, 12, 566–577, doi:10.3762/bjnano.12.47

Graphical Abstract
  • interesting experimental material to study [1][2][3]. Importantly, it is a promising material for new kinds of low-dimensional transistors, gas sensors, ultra-capacitors, electrodes for solar cells, and for van der Waals heterostructures. In order to construct these devices, an interaction between graphene
  • morphology substantially modify graphene properties. A novel approach of graphene-based nanostructures are van der Waals heterostructures in which graphene is transferred onto another material with a different morphology and electronic properties [5]. However, in those kinds of structures several aspects
PDF
Album
Full Research Paper
Published 22 Jun 2021

Local stiffness and work function variations of hexagonal boron nitride on Cu(111)

  • Abhishek Grewal,
  • Yuqi Wang,
  • Matthias Münks,
  • Klaus Kern and
  • Markus Ternes

Beilstein J. Nanotechnol. 2021, 12, 559–565, doi:10.3762/bjnano.12.46

Graphical Abstract
  • materials at the nanoscale. In this work, we study hexagonal boron nitride (h-BN), an atomically thin 2D layer, that is van der Waals-coupled to a Cu(111) surface. The system is of interest as a decoupling layer for functional 2D heterostructures due to the preservation of the h-BN bandgap and as a template
  • than the one studied in this work, the extremely low stiffness of only approx. 1 N·m−1 at the weakly bound rim areas confirmed the buckling of the monolayer into the third dimension to relieve the strain induced by the significant lattice mismatch of this strongly corrugated van der Waals layer [23
  • over step edges of the underlying Cu(111) substrate. Weak interlayer interaction allows the van der Waals layer to have varying relative rotational orientations, θ = 0–4°, on the substrate corresponding to a Moiré pattern wavelength of λ = 3–14 nm. Furthermore, we observe an upward shift of the surface
PDF
Album
Letter
Published 17 Jun 2021

Determining amplitude and tilt of a lateral force microscopy sensor

  • Oliver Gretz,
  • Alfred J. Weymouth,
  • Thomas Holzmann,
  • Korbinian Pürckhauer and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2021, 12, 517–524, doi:10.3762/bjnano.12.42

Graphical Abstract
  • experimental setup is to study an isolated surface feature, for instance, a defect or an adsorbate, on a flat terrace. In case of “normal” AFM, where the tip oscillates perpendicular to the surface, long-range forces including electrostatic and van der Waals forces contribute to the measured Δf signal, which
PDF
Album
Supp Info
Full Research Paper
Published 01 Jun 2021

Colloidal particle aggregation: mechanism of assembly studied via constructal theory modeling

  • Scott C. Bukosky,
  • Sukrith Dev,
  • Monica S. Allen and
  • Jeffery W. Allen

Beilstein J. Nanotechnol. 2021, 12, 413–423, doi:10.3762/bjnano.12.33

Graphical Abstract
  • with respect to van der Waals and double layer interactions. Preliminary results show that the particle aggregation behavior depends on the initial lattice configuration and solvent properties. Ultimately, our model provides the first constructal framework for predicting the self-assembly of particles
  • layers result in repulsion between two particles, this force is constantly opposed by the attractive van der Waals force. The balance between these interparticle forces gives the total DLVO force and highly depends on system parameters, such as the electrolyte concentration and fluid dielectric constant
  • dielectric constant, respectively. Conversely, the attractive van der Waals force is given by [14]: where the characteristic energy scale is set by the Hamaker constant, A. It is noted that Equation 1 and Equation 2 assume spherical particles of equal radius and a sufficiently small separation distance (a
PDF
Album
Full Research Paper
Published 06 May 2021

The nanomorphology of cell surfaces of adhered osteoblasts

  • Christian Voelkner,
  • Mirco Wendt,
  • Regina Lange,
  • Max Ulbrich,
  • Martina Gruening,
  • Susanne Staehlke,
  • Barbara Nebe,
  • Ingo Barke and
  • Sylvia Speller

Beilstein J. Nanotechnol. 2021, 12, 242–256, doi:10.3762/bjnano.12.20

Graphical Abstract
  • difference between SEM and SICM images is that the ruffles might be too fragile and are retracted or collapse upon critical point drying. However, especially attractive van der Waals forces might lead to the attachment of ruffles on the membrane surface and, hence, their deformation under vacuum conditions
PDF
Album
Full Research Paper
Published 12 Mar 2021

Extended iron phthalocyanine islands self-assembled on a Ge(001):H surface

  • Rafal Zuzak,
  • Marek Szymonski and
  • Szymon Godlewski

Beilstein J. Nanotechnol. 2021, 12, 232–241, doi:10.3762/bjnano.12.19

Graphical Abstract
  • van der Waals interactions [7], but the lack of a gap results in broadening and shifting of the molecular resonances. In recent years, it has been proposed to add a buffer layer between the metallic substrate and the molecules of interest [8][9]. This approach allows for the decoupling of the
PDF
Supp Info
Full Research Paper
Published 05 Mar 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
PDF
Album
Review
Published 25 Jan 2021

Bulk chemical composition contrast from attractive forces in AFM force spectroscopy

  • Dorothee Silbernagl,
  • Media Ghasem Zadeh Khorasani,
  • Natalia Cano Murillo,
  • Anna Maria Elert and
  • Heinz Sturm

Beilstein J. Nanotechnol. 2021, 12, 58–71, doi:10.3762/bjnano.12.5

Graphical Abstract
  • determined. Keywords: AFM force spectroscopy; composites; principle component analysis; structure–property correlation; van der Waals forces; Introduction The mechanical properties of small volumes of materials can be measured using various atomic force microscopy (AFM) methods. The well-established force
  • to a decrease in the lateral resolution compared to other AFM methods, such as tapping [28]. ncAFM is a more universal applicable method since it is carried out over the whole regime of attractive forces: It is sensitive to electrostatic forces (long range, >30 nm), van der Waals forces (intermediate
  • electrostatic interactions since the zero line, Figure 1(I), is stable up to distances of Z < −5 nm. Hence, as the main source of the measured attractive forces we consider electrodynamic interactions (caused by charge fluctuations in dipoles), commonly summarized under the term van der Waals forces. For the
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2021

Nanomechanics of few-layer materials: do individual layers slide upon folding?

  • Ronaldo J. C. Batista,
  • Rafael F. Dias,
  • Ana P. M. Barboza,
  • Alan B. de Oliveira,
  • Taise M. Manhabosco,
  • Thiago R. Gomes-Silva,
  • Matheus J. S. Matos,
  • Andreij C. Gadelha,
  • Cassiano Rabelo,
  • Luiz G. L. Cançado,
  • Ado Jorio,
  • Hélio Chacham and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2020, 11, 1801–1808, doi:10.3762/bjnano.11.162

Graphical Abstract
  • methods; atomic force microscopy (AFM); molecular dynamics (MD); Raman spectroscopy; nanostructured materials; Introduction Layered materials such as graphite, talc, and transition metal dichalcogenides (TMDs), held together by strong covalent bonds within layers and relatively weak van der Waals
  • layered materials as it determines the interlayer slip, which is the dominant mechanism to relieve stress at van der Waals interfaces, leading to phenomena such as the change from plate-like to membrane-like shapes in graphene, hBN, and MoS2 bubbles [12] or the circumferential faceting of multi-walled
PDF
Album
Supp Info
Full Research Paper
Published 30 Nov 2020
Other Beilstein-Institut Open Science Activities