Search results

Search for "FTIR" in Full Text gives 314 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • infrared (FTIR) spectrometer with measurements between 600 cm−1 and 4000 cm−1. The XPS analyses were obtained with a Kratos Axis supra spectrometer using an Al Kα source. Photocatalytic test A glass reactor equipped with a 100 W high-pressure mercury lamp (Sol 2A, Newport 94022A model) was used and the
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Nanocasting synthesis of BiFeO3 nanoparticles with enhanced visible-light photocatalytic activity

  • Thomas Cadenbach,
  • Maria J. Benitez,
  • A. Lucia Morales,
  • Cesar Costa Vera,
  • Luis Lascano,
  • Francisco Quiroz,
  • Alexis Debut and
  • Karla Vizuete

Beilstein J. Nanotechnol. 2020, 11, 1822–1833, doi:10.3762/bjnano.11.164

Graphical Abstract
  • electron microscope (TEM). Fourier-transform infrared (FTIR) spectra of the nanoscale materials were recorded using a Jasco FT IR-4700 spectrometer. Bandgap information was obtained using the spectra recorded in a Perkin Elmer UV–vis spectrometer with an integrating sphere. Spectra were suitably
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2020

PEG/PEI-functionalized single-walled carbon nanotubes as delivery carriers for doxorubicin: synthesis, characterization, and in vitro evaluation

  • Shuoye Yang,
  • Zhenwei Wang,
  • Yahong Ping,
  • Yuying Miao,
  • Yongmei Xiao,
  • Lingbo Qu,
  • Lu Zhang,
  • Yuansen Hu and
  • Jinshui Wang

Beilstein J. Nanotechnol. 2020, 11, 1728–1741, doi:10.3762/bjnano.11.155

Graphical Abstract
  • ). Fourier-transform infrared (FTIR) spectra in the range from 500 to 4000 cm−1 were recorded with a FTIR spectrometer (Nicolet IS10). X-ray diffraction (XRD) analysis was conducted using a BRUKER D8 X-ray diffractometer in the 2θ range of 0–100° at a scanning rate of 5°·min−1. For atomic force microscopy
  • shown in Figure 4C, the weak peak of 3455 cm−1 in the FTIR spectrum of raw SWCNTs is characteristic for O–H. The absorption peaks at about 3434 cm−1 (indicating O–H) and 1630 cm−1 (denoting C=O) of the CNTs-COOH samples are both attributed to the carboxy groups, and the former becomes notably sharper
  • different acid solutions: (B) H2SO4/H2O2, (C) HNO3, (D) H2SO4/HNO3, (E) CNTs-PEG and (F) CNTs-PEG-PEI. Characterization of different nanocarriers. (A, B) XPS spectra, (C) FTIR spectra, (D) XRD diffraction patterns (a: raw SWCNTs; b–d: CNTs-COOH synthesized using different acid solutions, b: H2SO4/H2O2, c
PDF
Album
Full Research Paper
Published 13 Nov 2020

Cardiomyocyte uptake mechanism of a hydroxyapatite nanoparticle mediated gene delivery system

  • Hiroaki Komuro,
  • Masahiro Yamazoe,
  • Kosuke Nozaki,
  • Akiko Nagai and
  • Tetsuo Sasano

Beilstein J. Nanotechnol. 2020, 11, 1685–1692, doi:10.3762/bjnano.11.150

Graphical Abstract
  • HAp nanoparticles were prepared using the water-in-oil (W/O) emulsion method. The characterization of the prepared HAp nanoparticles was carried out using transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). TEM provided insight into the
  • the as-prepared sample are consistent with the characteristic peaks of the standard hydroxyapatite peak positions and with the corresponding intensities of the diffraction peaks for HAp (International Centre for Diffraction Data, ICDD, no. 09-0432, vertical lines). The FTIR absorption spectra of the
  • . This material was found to correspond to the B-type carbonate-containing HAp in which the phosphate group was substituted by the carbonate group absorption band in the FTIR spectrum. The carbonate amount, including the HAp crystalline structure that was calculated in a previous report, was
PDF
Album
Full Research Paper
Published 05 Nov 2020

Piezoelectric sensor based on graphene-doped PVDF nanofibers for sign language translation

  • Shuai Yang,
  • Xiaojing Cui,
  • Rui Guo,
  • Zhiyi Zhang,
  • Shengbo Sang and
  • Hulin Zhang

Beilstein J. Nanotechnol. 2020, 11, 1655–1662, doi:10.3762/bjnano.11.148

Graphical Abstract
  • , and 1.0 wt %. Figure 2b shows SEM images after doping with different concentrations. It can be found that all spinning solutions yield a uniform fiber film without GR agglomeration after electrospinning. Figure 2c shows the FTIR spectra of samples with different doping concentrations. Further, XRD was
  • concentrations. (c) FTIR spectra of the PVDF fibers. (d) XRD patterns of the PVDF fibers. (e) Stress–strain curves of the PVDF fibers. (a) Schematic diagram of the PES under external pressure. (b) Output voltage as a function of the applied pressure for different doping concentrations. (c) Waveforms
PDF
Album
Full Research Paper
Published 02 Nov 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • reference in one cuvette and the second cuvette was filled with thiourea solution and Ag2S nanoparticles. An X-ray diffractometer (XRD-6000, Shimadzu) was used to investigate the structural properties of Ag2S NPs deposited on the glass substrate. A Fourier-transform IR (FTIR) spectrophotometer (8400S
  • NPs. CTAB has a positive surface charge [36], and CTAB molecules accumulated on the surfaces of the Ag2S NPs and repelled other Ag2S NPs due to the mobile electronic charges in Ag2S (negative surface charge). The FTIR spectra of the Ag2S NPs prepared with and without the CTAB surfactant measured in
  • . Two peaks appeared at 2842 and 2942 cm−1 in the FTIR spectrum of Ag2S prepared with CTAB. These peaks were attributed to the methylene (–CH2) extension vibration, indicating the adsorption of CTAB on the nanostructure surface. The broad IR peak at 3400 cm−1 is indexed to the presence of adsorbed water
PDF
Album
Full Research Paper
Published 21 Oct 2020

Cu2O nanoparticles for the degradation of methyl parathion

  • Juan Rizo,
  • David Díaz,
  • Benito Reyes-Trejo and
  • M. Josefina Arellano-Jiménez

Beilstein J. Nanotechnol. 2020, 11, 1546–1555, doi:10.3762/bjnano.11.137

Graphical Abstract
  • surface of the Cu2O NPs when they are placed in water [47][48]. One important difference in the O 1s XPS spectra between 16 nm and 29 nm NPs is the peak at 533.4 eV, which corresponds to CuCO3 [52]. This carbonate species is also observed in the FTIR spectra. The carbonate species is formed only on the 16
PDF
Album
Full Research Paper
Published 12 Oct 2020

Transient coating of γ-Fe2O3 nanoparticles with glutamate for its delivery to and removal from brain nerve terminals

  • Konstantin Paliienko,
  • Artem Pastukhov,
  • Michal Babič,
  • Daniel Horák,
  • Olga Vasylchenko and
  • Tatiana Borisova

Beilstein J. Nanotechnol. 2020, 11, 1381–1393, doi:10.3762/bjnano.11.122

Graphical Abstract
  • the ligands. Raman and FTIR spectroscopy measurements showed that glutamate and aspartate salts were adsorbed at the surface of γ-Fe2O3 nanoparticles [20]. It should be noted that the methodological protocol of above experiments on glutamate and aspartate chemisorption suggested the use of bio
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • ) analysis (Rigaku D/Max-rB, Japan), with diffraction angle values ranging from 5° to 60°, was performed to examine the crystalline structure of CCGNFs. A Fourier-transform infrared spectrometer (FTIR) (Frontier, Perkin-Elmer Company, USA) was used to investigate the structural changes of the CNFs before and
  • porous structure on the surface of the CGCNFs, due to the decomposition of the PGCNFs and PAN coating during carbonization. FTIR and XRD spectra analysis The FTIR spectra were used to analyze whether there was any interaction between PAN and graphene. In the PAN spectrum, the absorption peaks at 1239
  • ) FTIR spectra of PAN nanofibers (dark green), graphene (light green), PGCNFs (purple) and CGCNFs (cyan). (b) XRD results of PAN nanofibers (cyan), graphene (gray), PGCNFs (light green) and CGCNFs (dark green). (a) Nitrogen adsorption–desorption isotherms and (b) their corresponding PSD curves determined
PDF
Album
Full Research Paper
Published 27 Aug 2020

Ultrasensitive detection of cadmium ions using a microcantilever-based piezoresistive sensor for groundwater

  • Dinesh Rotake,
  • Anand Darji and
  • Nitin Kale

Beilstein J. Nanotechnol. 2020, 11, 1242–1253, doi:10.3762/bjnano.11.108

Graphical Abstract
  • 0.56 ng Cd(II) is 877.72 Ω. Characterization using Fourier-transform infrared spectroscopy (FTIR) FTIR is a mature technique for elemental analysis and the identification of functional groups. The FTIR results show –OH stretching in the range of 2900–3750 cm−1 and N–H bending (1350–1750 cm−1) [48][49
  • ][50][51]. The FTIR analysis of a Cd(II)/DL-GC/Cys/Au/Cr coating is shown in Figure 6. The FTIR results of the Cys/Au/Cr coating show a single band at 3367 cm−1 associated to the –OH group and three bands at 1420, 1651, and 1732 cm−1 associated to the –NH2 group. After coating with ᴅʟ-glyceraldehyde
  • (DL-GC/Cys/Au/Cr), the FTIR spectra show four bands at 1320, 1473, 1571, and 1647 cm−1 associated to the –NH2 group and two bands at 2922 and 3311 cm−1 associated to the –OH group. After exposure to Cd(II) two bands related to –OH disappear and only single band at 3500 cm−1 is present due Cd(II
PDF
Album
Full Research Paper
Published 18 Aug 2020

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • mixture. All materials including BTO, BTO-PTh, and PTh are characterized using Fourier-transform infrared spectroscopy (Nicolet 520 FTIR spectrophotometer) and X-ray diffraction (STOE STADI P X-ray diffractometer). The morphology of BTO and BTO-PTh nanoparticles is studied using scanning electron
  • Chemical structure and surface morphology of the as-prepared BTO nanoparticles, core–shell-type BTO-PTh nanoparticles, and pristine PTh are characterized and reported herein. Figure 2 shows the FTIR spectra of PTh, BTO, and BTO-PTh nanoparticles. A distinct peak at 560 cm−1 is the characteristic stretching
  • the core–shell BTO-PTh nanoparticles. FTIR spectra of the as-prepared BTO nanoparticles, pristine PTh, and core–shell BTO-PTh nanoparticles. XRD patterns of the as-prepared BTO nanoparticles, pristine PTh, and core–shell BTO-PTh nanoparticles. The diffraction peaks denoted by (#) correspond to the
PDF
Album
Full Research Paper
Published 10 Aug 2020

Gram-scale synthesis of splat-shaped Ag–TiO2 nanocomposites for enhanced antimicrobial properties

  • Mohammad Jaber,
  • Asim Mushtaq,
  • Kebiao Zhang,
  • Jindan Wu,
  • Dandan Luo,
  • Zihan Yi,
  • M. Zubair Iqbal and
  • Xiangdong Kong

Beilstein J. Nanotechnol. 2020, 11, 1119–1125, doi:10.3762/bjnano.11.96

Graphical Abstract
  • obtain homogeneous Ag–TiO2 nanocomposites with a high yield. The prepared compounds were characterized by XRD, SEM, EDS, FTIR and UV–vis spectrophotometry. The cell viability upon exposure to the splat-shaped Ag–TiO2 nanocomposites was evaluated by using the Cell Counting Kit-8 assay. The antimicrobial
  • spectroscopy (FTIR, Nicolet IS50) was used to measure the infrared spectra. To detect the absorption profile of the prepared samples, the UV–vis spectroscopy technique was used. In vitro cytotoxicity The Cell Counting Kit-8 (CCK-8) was purchased from Beyotime Biotechnology (Shanghai, China). Human colon
  • compounds. The sample without Ag was identified as pure TiO2 nanospheres (Figure 2a). Figure 3a shows the FTIR spectrum of pure TiO2 NPs in comparison with the Ag–TiO2 nanocomposites at different Ag concentrations. The central absorption peak of pure TiO2 NPs and Ag–TiO2 nanocomposites at 3475.2, 3469.1
PDF
Album
Full Research Paper
Published 29 Jul 2020

Uniform Fe3O4/Gd2O3-DHCA nanocubes for dual-mode magnetic resonance imaging

  • Miao Qin,
  • Yueyou Peng,
  • Mengjie Xu,
  • Hui Yan,
  • Yizhu Cheng,
  • Xiumei Zhang,
  • Di Huang,
  • Weiyi Chen and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2020, 11, 1000–1009, doi:10.3762/bjnano.11.84

Graphical Abstract
  • (Figure 2i). Fourier-transform infrared spectroscopy (FTIR) was conducted to verify the nanocube surface modifiers before and after DHCA exchange. By comparing the FTIR spectra of FGOA and FGDA nanocubes (Figure 2i), it is possible to conclude that the two samples display distinct characteristic
  • coincide with the peaks of pure Fe3O4 (asterisks) and Gd2O3 (triangles). (i) FTIR spectra of FGOA (red line) and FGDA (black line) nanocubes. (j) Field-dependent magnetization curves (M–H) of Fe3O4/Gd2O3 (black line) and Fe3O4 (red line) measured using a physical property measurement system (PPMS) at 300 K
PDF
Album
Full Research Paper
Published 08 Jul 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • sample regions evaluated with SEM. The pore size distributions of CNFMs were measured using capillary flow porometry (Porometer 3G, Quantachrome Instruments, USA). All samples were circular membranes with a diameter of 25 mm and the thickness of 10 μm. FTIR spectra of CNFMs were obtained using Fourier
  • -transform infrared spectroscopy (FTIR, Nicolet5700, Thermo Nicolet Company, Waltham, MA, USA), carrying out 32 scans within the wavenumber range of 400–4000 cm−1 with a resolution of 4 cm−1. X-ray diffraction (XRD) analyses were carried out using a Philips X’Pert-Pro MPD (PANalytical, Almelo & Eindhoven
  • studies. FTIR and XRD analysis: FTIR was used to characterize the CNFMs with different [Cu(Ac)2/Zn(Ac)2]/[PVDF/PAN] weight ratios (Figure 7). The peaks at 879 cm−1 correspond to the asymmetric stretching vibration of –CF2– in PVDF. The peaks at 1070 and 1276 cm−1 represent the β-phase of PVDF. There was
PDF
Album
Full Research Paper
Published 15 Apr 2020

Silver-decorated gel-shell nanobeads: physicochemical characterization and evaluation of antibacterial properties

  • Marta Bartel,
  • Katarzyna Markowska,
  • Marcin Strawski,
  • Krystyna Wolska and
  • Maciej Mazur

Beilstein J. Nanotechnol. 2020, 11, 620–630, doi:10.3762/bjnano.11.49

Graphical Abstract
  • the particles is similar to that of non-sulfonated polystyrene beads (SEM data not shown). Thus, if shape and size of the beads are retained during the reaction, the question arises whether they have been in fact transformed into the gel-shell particles [27][28]. To answer this question FTIR
  • spectroscopy has been employed. Figure 3 shows the FTIR spectrum of the sulfonated particles. The most intense mode at 1186 cm−1 with a broad shoulder is attributed to the asymmetric stretching of S=O bonds. The symmetric stretching vibrations of SO3− groups produce the band at 1041 cm−1. The peak at 834 cm−1
  • that there is both sulfonated and non-sulfonated polystyrene. The peak at 699 cm−1 assigned to the out-of-plane skeleton bending vibrations of the benzene ring is correlated to the degree of sulfonation (the larger the intensity of the band, the lower the sulfonation degree). The FTIR results clearly
PDF
Album
Full Research Paper
Published 14 Apr 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • –visible spectrophotometer (Thermal Scientific Evolution 201). The Fourier-transform infrared spectroscopy (FTIR) analysis of the prepared carbon nanoparticles was conducted on a Fourier transform infrared instrument (Nicolet iS50) in the wavenumber range of 400 to 4000 cm−1 at a resolution of 4 cm−1
  • the irreversible change in the energy gap at high temperatures. The PL characteristics of CDs depend on the structure and composition of the CDs, as shown by the FTIR spectra of the HTC-CDs, annealed-CDs, and LA-CDs-10% (Figure 7). The FTIR spectrum of the HTC-CDs is similar to that of LA-CDs-10
  • the range of 800–600 cm−1, corresponding to the bending vibrations of C–O and C–N bonds. Note that the FTIR spectra of all the LA-CDs-x% reveal the presence of N-containing groups, as shown in Figure S3f in Supporting Information File 1, suggesting that the LAL processing of the annealed-HTC carbon
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • presence of the azo compounds was verified using a combination of Fourier-transform infrared (FTIR) and UV–vis absorption spectroscopy. A characteristic vibration at 2991 cm−1, which can be associated to the N–H stretching vibrations of the ammonium headgroup (Figure 4E), vanishes completely for 3D-AzoC2
  • in Supporting Information File 1, Figure S15. (A–D) SEM images of particles with (A) AzoC1, (B) AzoC2, (C) AzoOC4 and (D) AzoOC12 ligands on the surface, scale bar = 1 µm. (E) FTIR transmission spectrum of non-functionalized CH3NH3PbBr3 (black), AzoC2 (red) and 3D-AzoC2 (blue). Wave numbers at 2991
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • EEG samples. This correlates with the Fourier-transform infrared spectroscopy (FTIR) based analysis (Figure S1b), which also shows the presence of covalent C–F functional groups in all the samples. The samples also contain fluorine as one of the dopants with a content varying from 2.3 to 3.9 atom
  • (see Figure 2a). In order to test the durability of the materials in acidic medium, chronoamperometry studies were carried out in 0.5 M H2SO4 at 0.45 V vs RHE for 3 h. The EEG samples were studied (before and after chronoamperometry) using Raman and FTIR spectroscopy along with the electrochemical
  • experiment. The important Raman peaks are marked in the figure and the shoulder peak in “G” is due to the additional single phonon intra-valley scattering process (named as D’) which is due to the presence of defects. However, the FTIR spectrum (see Figure S4b) shows evidence for the formation of OH
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

Synthesis and enhanced photocatalytic performance of 0D/2D CuO/tourmaline composite photocatalysts

  • Changqiang Yu,
  • Min Wen,
  • Zhen Tong,
  • Shuhua Li,
  • Yanhong Yin,
  • Xianbin Liu,
  • Yesheng Li,
  • Tongxiang Liang,
  • Ziping Wu and
  • Dionysios D. Dionysiou

Beilstein J. Nanotechnol. 2020, 11, 407–416, doi:10.3762/bjnano.11.31

Graphical Abstract
  • scanning electron microscope (SEM, Tescan, Czech) was used to observe the morphology. A Titan G2 60-300 transmission electron microscope (TEM, FEI, USA) was employed to analyze the microstructure. A NEXUS 670 spectrometer (Thermo Nicolet, USA) was employed for recording the Fourier transform infrared (FTIR
  • to pure CuO, the binding energy of Cu 2p3/2 and Cu 2p1/2 for the CuO/tourmaline composite was shifted to 933.49 eV and 953.37 eV, respectively, providing evidence of the chemical interaction between CuO and tourmaline. It is convenient to detect the chemical bonds in complex materials by FTIR
  • Figure 8, MB degradation over the CuO/tourmaline composite remained at 93.3% after being used for five times. There was no obvious distinction between the XRD patterns and FTIR spectra of the fresh and reused CuO/tourmaline composite, except for a slight decrease in the intensity (Supporting Information
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • efficiency of the formed complexes in A549 lung cancer cells. The polyplex formed was found to exhibit 66% complexation efficiency. The complexation was confirmed by gel retardation assays, FTIR and thermal analysis. The blank PVI polymer was not toxic to cells. The polyplex was found to exhibit excellent
  • reference. Fourier-transform infrared spectroscopy (FTIR): The FTIR spectra of the free siRNA, blank polymer nanoparticles and the polyplex were recorded between 4000 and 400 cm−1 averaging 10 scans per run in attenuated total reflection mode (ATR) using a Fourier-transform infrared spectrometer (Spectrum
  • investigated by using FTIR and DSC (Figure 2). The FTIR of PVI shows vibration bands at 2950 cm−1 (imidazole C–H stretching vibrations) and at 1645, 1506 and 1411 cm−1 (imidazole C–N stretching vibrations). The N–H in-plane bending vibrations are observed at 1235 cm−1. The polyplex also shows stretching
PDF
Album
Full Research Paper
Published 17 Feb 2020

Facile biogenic fabrication of hydroxyapatite nanorods using cuttlefish bone and their bactericidal and biocompatibility study

  • Satheeshkumar Balu,
  • Manisha Vidyavathy Sundaradoss,
  • Swetha Andra and
  • Jaison Jeevanandam

Beilstein J. Nanotechnol. 2020, 11, 285–295, doi:10.3762/bjnano.11.21

Graphical Abstract
  • ) nanorods using cuttlefish bone powder as a precursor (CB-Hap NRs). The obtained CB-Hap NRs were investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermogravimetric analysis (TGA) techniques to evaluate their
  • physicochemical properties. The crystallite size (20.86 nm) obtained from XRD data and the elemental analysis (Ca/P molar ratio was estimated to be 1.6) showed that the Hap NRs are similar to that of natural human bone (≈1.67). Moreover, the FTIR data confirmed the presence of phosphate as a functional group and
  • setup via an oil bath approach to synthesize Hap nanorods from cuttlefish bone powders and optimize their synthesis parameters. The systematic characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and transmission electron microscopy (TEM) was performed to
PDF
Album
Full Research Paper
Published 04 Feb 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • contamination with sulfur was observed (0.3 atom %, S 2p at ≈164–169 eV). However, the small differences in the GnPs’ surfaces’ chemical composition did not affect the properties of the HDPE-based nanocomposites. The results of FTIR analysis are shown in Figure 3a (further details can be found in Figures S1–S7
  • molding. The size effects of the GnPs on the morphological, thermal, electrical, and mechanical properties of the composites was studied. The small differences in the GnPs’ surfaces’ chemical composition were detected by XPS, and the highest amount of oxygen that was found was 2.6 atom % for G1. FTIR and
  • XRD findings showed that the addition and size of GnPs led to slight differences in the FTIR spectra of the nanocomposites compared to that of pure HDPE, while the addition of GnPs affected the reflection peaks and peak intensities. Based on SEM images, all GnPs showed uniform and random dispersion in
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Internalization mechanisms of cell-penetrating peptides

  • Ivana Ruseska and
  • Andreas Zimmer

Beilstein J. Nanotechnol. 2020, 11, 101–123, doi:10.3762/bjnano.11.10

Graphical Abstract
  • the cell membrane has been crossed. It was demonstrated that the free form of Pep-1 interacts strongly with the lipid components in the membrane, leading to a conformational change – the peptide tends to form α-helices. The conformational transitions have been confirmed by CD, NMR and FTIR data. The
PDF
Album
Review
Published 09 Jan 2020

Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery

  • Dávid Juriga,
  • Evelin Sipos,
  • Orsolya Hegedűs,
  • Gábor Varga,
  • Miklós Zrínyi,
  • Krisztina S. Nagy and
  • Angéla Jedlovszky-Hajdú

Beilstein J. Nanotechnol. 2019, 10, 2579–2593, doi:10.3762/bjnano.10.249

Graphical Abstract
  • shrink. Between pH 6 and 8, the swelling degrees abruptly rise as the polymer networks are hydrolyzed. The successful hydrolysis was proved by FTIR spectroscopy (Supporting Information File 1, Figure S2). This kind of abrupt change was described in previous articles, where other molecules or only LYS
PDF
Album
Supp Info
Full Research Paper
Published 27 Dec 2019

pH-Controlled fluorescence switching in water-dispersed polymer brushes grafted to modified boron nitride nanotubes for cellular imaging

  • Saban Kalay,
  • Yurij Stetsyshyn,
  • Volodymyr Donchak,
  • Khrystyna Harhay,
  • Ostap Lishchynskyi,
  • Halyna Ohar,
  • Yuriy Panchenko,
  • Stanislav Voronov and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2019, 10, 2428–2439, doi:10.3762/bjnano.10.233

Graphical Abstract
  • thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), dynamic light scattering (DLS), ultraviolet–visible spectrophotometry (UV–vis), laser scanning confocal microscopy (LSCM) and scanning electron microscopy (SEM). The DLS results demonstrated that P(AA-co-FA)-functionalized BNNTs
  • heated from 30.00 to 600.00 °C at 10 °C/min. Fourier transform infrared spectroscopy (FTIR) FTIR spectra were recorded on a NICOLET iS50 FTIR spectrometer (Thermo Scientific, USA), equipped with a iS50 ATR multirange, diamond sampling station. The sample powders were either placed on diamond crystal or
  • spectroscopic, gravimetric and imaging techniques including FTIR, UV–vis, DLS, TGA, LSCM and SEM. The fabrication of the oligoperoxide-functionalized BNNTs was described in detail in our previous publication [12] and here we focus on the synthesis and properties of the P(AA-co-FA)-functionalized BNNTs. The
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019
Other Beilstein-Institut Open Science Activities