Search results

Search for "SiO2" in Full Text gives 472 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • three-dimensional metal oxide semiconductor field-effect transistors (MOSFETs) [1]. Here, formation processes of ultrathin SiO2 at the interface are considered to be quite important in determining its dielectric properties. To study procedures to fabricate gate dielectrics, it will be necessary to
  • the Si 2p and O 1s core levels in detail during thermal oxidation using high-resolution X-ray photoelectron spectroscopy with synchrotron radiation [7][8][9]. Using a state-of-the-art wet oxidation procedure, we also reduced the interface trap density (Dit) at the SiO2/Si interface on the Si(113
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
  • . developed a superhydrophilic and underwater superoleophobic nanofibrous membrane of PAN with hierarchically structured skin constructed by electrospraying silica nanoparticles (SiO2 NPs) mixed in a dilute PAN solution on the top surface of an electrospun PAN membrane. The SiO2 NPs have been used to increase
  • fused SiO2 NPs. The prepared nanohybrid showed efficient separation of oil and water with excellent stability in the range of pH 2–12, indicating its potential to be used in oil spill cleanup and the treatment of industrial oil-polluted water [70]. Ma and co-workers also fabricated an oil–water
  • separating nanohybrid membrane with a SiO2 NP-integrated F-PBZ functional layer on the surface of an electrospun core–shell-structured membrane of CA/PI nanofibers. The membrane showed hydrophobicity with a water contact angle of 160° and superlipophilicity with an extremely low oil contact angle of 0°. The
PDF
Album
Review
Published 31 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Design aspects of Bi2Sr2CaCu2O8+δ THz sources: optimization of thermal and radiative properties

  • Mikhail M. Krasnov,
  • Natalia D. Novikova,
  • Roger Cattaneo,
  • Alexey A. Kalenyuk and
  • Vladimir M. Krasnov

Beilstein J. Nanotechnol. 2021, 12, 1392–1403, doi:10.3762/bjnano.12.103

Graphical Abstract
  • on a flat portion of Bi-2212 surface, followed by argon-ion etching of the unprotected parts of Au and Bi-2212, the deposition of insulating SiO2 or CaF2 layers and a lift-off of the photoresist at the line. The depth of Bi-2212 etching at this stage (dm ≈ 200–400 nm) defines the height of mesas and
PDF
Album
Full Research Paper
Published 21 Dec 2021

Morphology-driven gas sensing by fabricated fractals: A review

  • Vishal Kamathe and
  • Rupali Nagar

Beilstein J. Nanotechnol. 2021, 12, 1187–1208, doi:10.3762/bjnano.12.88

Graphical Abstract
  • geometry. Plugotarenko et al. employed sol–gel method to prepare SiO2·SnOx·CuOy nanofilms from a tetraethoxysilane (TEOS) alcohol solution modified by metal salts and applied the samples for NO2 sensing [50]. The SiO2·SnOx·CuOy films annealed at 500 °C exhibited a sample surface consisting of crater-like
  • . Gracheva and co-workers prepared gas-sensitive fractal structures based on SnO2 and silicon dioxide (SiO2) by a sol–gel technique [57][69][70]. The evolution of fractal aggregates of tin and silicon dioxides resulted in the formation of spherical, labyrinth, and percolation network structures. The
PDF
Album
Supp Info
Review
Published 09 Nov 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • molecule, on a SiO2 surface. The simulations reveal the processes driving the initial phase of nanostructure formation during FEBID, including the nucleation of Pt atoms and the formation of small metal clusters on the surface, followed by their aggregation and the formation of dendritic platinum
  • the output of MD simulations [20]. In a pioneering study [13], IDMD was successfully applied for the simulation of FEBID of W(CO)6 precursors on a SiO2 surface and enabled to predict the morphology, molecular composition, and growth rate of tungsten-based nanostructures emerging on the surface during
  • electrons emitted from a SiO2 substrate were used to simulate electron-induced formation and growth of metal nanostructures after deposition of W(CO)6 precursors on SiO2. Investigation of the physicochemical phenomena that govern the formation and growth of nanostructures coupled to radiation is a complex
PDF
Album
Full Research Paper
Published 13 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • temperature showing a clear increase in the PL emission. Besides Ag nanorods and nanospheres, other plasmonic nanostructures, such as Ag nanocubes and nanostars tend to enhance LED properties owing to their sharp facets and edges [105][106]. Yu et al. have incorporated Ag nanocube core coated with SiO2 shell
  • reduced its work function by nearly 1 eV. Furthermore, the I–V characteristics of the device with Ca-doped graphene/Alq3/Ag manifest a two-fold increase in current (at 2 V bias) as compared to only graphene. Similarly, Chang et al. have doped graphene with n-type CsF or Cs2CO3 on a SiO2 substrate, thus
PDF
Album
Review
Published 24 Sep 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
PDF
Album
Review
Published 11 Aug 2021

Electromigration-induced formation of percolating adsorbate islands during condensation from the gaseous phase: a computational study

  • Alina V. Dvornichenko,
  • Vasyl O. Kharchenko and
  • Dmitrii O. Kharchenko

Beilstein J. Nanotechnol. 2021, 12, 694–703, doi:10.3762/bjnano.12.55

Graphical Abstract
  • from [78] for the system Ge on SiO2 at T = 773 K: activation energy for desorption Ed ≃ 0.44 eV and activation energy for diffusion ED ≃ 0.24 eV. By exploiting the formula for the diffusion length LD = with the lattice constant a = 5.6 × 10−10 for Ge we get LD = a2exp((Ed − ED)/T) ≃ 50 nm. With the
PDF
Album
Letter
Published 13 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • SiO2/Si substrate were irradiated on one half with 25 keV helium ions. It was found that at a dose of 2 × 1015 ions/cm2 a domain wall could be injected into the structure due to the introduction of lattice defects that locally reduced the perpendicular magnetic anisotropy. By raising the dose slightly
  • were so low, the change in optical properties was attributed to the local accumulation of defects (as opposed to collisional phase mixing). In a plasmonic application, resonant triangular nanostructures were created in a graphene sheet supported on SiO2/Si by selectively irradiating the graphene in the
  • –1016 ions/cm2, the rate of subsequent wet-etching of the irradiated regions with hydrofluoric acid was found to increase by up to a factor of three (for Si3N4) and five (for SiO2). The change was attributed to ion-induced defects and demonstrates another potential form of HIM-enabled nanofabrication
PDF
Album
Review
Published 02 Jul 2021

Structural and optical characteristics determined by the sputtering deposition conditions of oxide thin films

  • Petronela Prepelita,
  • Florin Garoi and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2021, 12, 354–365, doi:10.3762/bjnano.12.29

Graphical Abstract
  • dioxide (SiO2) and zinc oxide (ZnO) thin films deposited by radio frequency magnetron sputtering on quartz substrates was investigated. The deposition conditions were optimized to achieve stoichiometric thin films. The orientation of crystallites, structure, and composition were investigated by X-ray
  • thickness. The optical constants (i.e., the refractive index n, the extinction coefficient k, and the absorption coefficient α) of the SiO2 and ZnO oxide films were determined from the transmission spectra recorded in the range of 190–2500 nm by using the Swanepoel method, while the energy bandgap was
  • ; optical quality; SiO2 and ZnO; structural properties; thin films; Introduction The application of oxide thin films is quite diverse due to their excellent properties [1][2][3][4][5], such as dielectric properties [6][7][8] for the production of metamaterials [9]. Metamaterials applied in the field of
PDF
Album
Full Research Paper
Published 19 Apr 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • hybrid structure can be lifted off from the substrate and transferred onto bulk substrates, such as SiO2, or onto TEM grids in order to obtain a free-standing CNM with a metallic nanostructure on top. It was shown that the membrane is mechanically stable enough during the whole process and that the
  • the Ag layer by putting it into a 1 M Fe(NO3)3 solution for 24 h, the sample was protected by a 400 nm thick layer of poly(methyl methacrylate) (PMMA). In a next step, the CNM/EBID/PMMA hybrid structure was transferred onto a SiO2 substrate. Finally, the PMMA was dissolved in acetone. The results for
  • onto a bulk SiO2 substrate the same structure could be relocated. However, the appearance in the SEM image of the structure changed (Figure 4c). A bright circular shape is located around the structure. Furthermore, no clear iron nanocrystals are visible anymore in the corresponding blowup image
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • domain pattern or in the hysteresis of the sample. Similar ion dose ranges are reported elsewhere for Co/Pt multilayer systems on SiO2 substrates [41]. Figure 5 shows images of the domain configuration in the multilayer irradiated with an ion dose of 30 ions/nm2. The gray-scale images encode purely
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

A review on the green and sustainable synthesis of silver nanoparticles and one-dimensional silver nanostructures

  • Sina Kaabipour and
  • Shohreh Hemmati

Beilstein J. Nanotechnol. 2021, 12, 102–136, doi:10.3762/bjnano.12.9

Graphical Abstract
  • [143][231]. In most cases, AgNPs are synthesized in metal oxide thin films such as TiO2, SiO2, and ZrO2 where the average particle size is almost 10 nm when the heating temperature is 600 °C in the case of SiO2 thin films, and 500 °C in the case of TiO2 and ZrO2 [231]. Arun Kumar et al. [145
  • precursor for this purpose [241]. An important advantage of this technique is the establishment of a silver-metal-oxide (e.g. SiO2 or TiO2) nanocomposite coating using only one deposition step [241]. The CVD method also provides many opportunities for the synthesis of silver-coated materials with varying
PDF
Album
Review
Published 25 Jan 2021

Effect of different silica coatings on the toxicity of upconversion nanoparticles on RAW 264.7 macrophage cells

  • Cynthia Kembuan,
  • Helena Oliveira and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 35–48, doi:10.3762/bjnano.12.3

Graphical Abstract
  • thicker shells. As a reference system, pure silica nanoparticles with a size of 50 nm were also coupled with RBITC and functionalized with AHAPS (sample SiO2 @RBITC_NH2). STEM images of each sample are shown in Supporting Information File 1, Figure S3. The STEM data of all the particles is summarized in
  • -average values of the samples after redispersion in DMEM were lower than in water, except for the samples UC@thin_NH2, UC@thick_RBITC_NH2, and SiO2@RBITC_NH2. The lower Z-average values of these samples may indicate an increased stabilization by a protein corona [52][53][54][55][56]. However, the high
  • aggregation of silica nanoparticles that occurred after redispersion in buffered solution and in physiological medium [54]. They reported that various proteins in a medium containing FBS were adsorbed onto the surface of bare SiO2 and amine-functionalized SiO2 nanoparticles, forming a protein corona with a
PDF
Album
Supp Info
Full Research Paper
Published 08 Jan 2021

Atomic layer deposited films of Al2O3 on fluorine-doped tin oxide electrodes: stability and barrier properties

  • Hana Krýsová,
  • Michael Neumann-Spallart,
  • Hana Tarábková,
  • Pavel Janda,
  • Ladislav Kavan and
  • Josef Krýsa

Beilstein J. Nanotechnol. 2021, 12, 24–34, doi:10.3762/bjnano.12.2

Graphical Abstract
  • [2][3][4]. Depending on the thickness of the protecting layer, the passage of electrical current was progressively hindered as the layer thickness was increased, such that tunnelling became impossible [5]. A similar protection by ALD-grown layers of Ta2O5 [6] or SiO2 [7] was used for other
  • alumina coatings was ascribed to its capability of passivating semiconductor/electrolyte interfaces, thus reducing photogenerated charge-carrier recombination (e.g., on BiVO4 [16]). In this work, Al2O3 films were deposited via ALD on thermally grown SiO2 on silicon or on fluorine-doped tin oxide (FTO
  • the substrates before and after ALD deposition of an Al2O3 layer. As shown in Figure S1 and Figure S2 (Supporting Information File 1), the surface morphology of both substrates, the as-received and the Al2O3-coated SiO2 layer, was almost identical. This indicates a uniform distribution of the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2021

Unravelling the interfacial interaction in mesoporous SiO2@nickel phyllosilicate/TiO2 core–shell nanostructures for photocatalytic activity

  • Bridget K. Mutuma,
  • Xiluva Mathebula,
  • Isaac Nongwe,
  • Bonakele P. Mtolo,
  • Boitumelo J. Matsoso,
  • Rudolph Erasmus,
  • Zikhona Tetana and
  • Neil J. Coville

Beilstein J. Nanotechnol. 2020, 11, 1834–1846, doi:10.3762/bjnano.11.165

Graphical Abstract
  • @NiPS/TiO2) core–shell nanostructures. The TEM results showed that the mSiO2@NiPS composite has a core–shell nanostructure with a unique flake-like shell morphology. XPS analysis revealed the successful formation of 1:1 nickel phyllosilicate on the SiO2 surface. The addition of TiO2 to the mSiO2@NiPS
  • yielded the mSiO2@NiPS/TiO2 composite. The bandgap energy of mSiO2@NiPS and of mSiO2@NiPS/TiO2 were estimated to be 2.05 and 2.68 eV, respectively, indicating the role of titania in tuning the optoelectronic properties of the SiO2@nickel phyllosilicate. As a proof of concept, the core–shell nanostructures
  • metal oxides, such as ZrO2 [16] and SiO2 [17], influence the morphology and surface features of the resulting binary metal oxide semiconductors. Moreover, these binary metal oxide semiconductors act as charge-transfer catalysts and significantly reduce the electron–hole recombination [18][19]. Another
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2020

Imaging and milling resolution of light ion beams from helium ion microscopy and FIBs driven by liquid metal alloy ion sources

  • Nico Klingner,
  • Gregor Hlawacek,
  • Paul Mazarov,
  • Wolfgang Pilz,
  • Fabian Meyer and
  • Lothar Bischoff

Beilstein J. Nanotechnol. 2020, 11, 1742–1749, doi:10.3762/bjnano.11.156

Graphical Abstract
  • ], the fabrication of graphene nanomeshes [8], the formation of single Si nanocrystals embedded in SiO2 for single-electron transistors [9], the spatially resolved engineering of the thermal conductivity in individual Si nanowires [10], as well as the creation of nano-Josephson superconducting tunnel
PDF
Album
Full Research Paper
Published 18 Nov 2020

Seebeck coefficient of silicon nanowire forests doped by thermal diffusion

  • Shaimaa Elyamny,
  • Elisabetta Dimaggio and
  • Giovanni Pennelli

Beilstein J. Nanotechnol. 2020, 11, 1707–1713, doi:10.3762/bjnano.11.153

Graphical Abstract
  • layer of oxide as a result of the HNO3 etching. The doping of the silicon nanowires has been carried out by thermal diffusion from a solid source. At first, the chips with the SiNW forests, with a surface of roughly 1 × 1 cm2 have been cleaned in buffered HF (BHF) for 1 min, to remove the SiO2 grown
  • penetration of the doping species (phosphorous, in our case) into the silicon. It requires an oxidizing environment, at least in a first preliminary phase, to grow a thin SiO2 layer at the surface as a barrier for the doping species, forcing the diffusion into silicon. In the specific case of thermoelectric
PDF
Album
Full Research Paper
Published 11 Nov 2020

The influence of an interfacial hBN layer on the fluorescence of an organic molecule

  • Christine Brülke,
  • Oliver Bauer and
  • Moritz M. Sokolowski

Beilstein J. Nanotechnol. 2020, 11, 1663–1684, doi:10.3762/bjnano.11.149

Graphical Abstract
  • best of our knowledge, there have been no studies on the FL of monolayers of molecules on metal-supported hBN layers, yet. Kerfoot et al. [22] studied the FL of PTCDA and perylene-3,4,9,10-tetracarboxylic-3,4,9,10-diimide (PTCDI) on an exfoliated hBN monolayer that was transferred onto SiO2. Forker et
  • , causing an enhancement by a factor of not more than 102–103 [46]. Recently, hBN has gained interest as a SERS substrate [49]. In a comparative study on 2DMs on SiO2 it was shown that hBN had an enhancement effect on the Raman modes of adsorbed copper phthalocyanine molecules [50]. The effect was explained
  • observed for hBN on SiO2/Si [61], on Cu foils [62], and on other metal foils [63][64] for our samples of hBN/Cu(111). This is an obvious discrepancy, which we cannot explain based on our current data. It may, however, be related to the specific interface between hBN and the single crystalline Cu substrate
PDF
Album
Full Research Paper
Published 03 Nov 2020

Amorphized length and variability in phase-change memory line cells

  • Nafisa Noor,
  • Sadid Muneer,
  • Raihan Sayeed Khan,
  • Anna Gorbenko and
  • Helena Silva

Beilstein J. Nanotechnol. 2020, 11, 1644–1654, doi:10.3762/bjnano.11.147

Graphical Abstract
  • -switching process and not to the permanent and detrimental electrical breakdown failure that occurs in any dielectric material. Experimental The patterned GST-225 line cells used for this study were deposited on silicon dioxide (SiO2), had bottom metal contact pads (tungsten with Ti/TiN liner), and were
PDF
Album
Full Research Paper
Published 29 Oct 2020

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • , a SiO2 thin film was grown on the silicon substrate before Ag2S deposition through rapid thermal oxidation (RTO) at a temperature of 950 °C for 25 s, and then HF etchant was used to open a Si window on SiO2. The experimental details regarding the RTO process are presented elsewhere [20]. To
PDF
Album
Full Research Paper
Published 21 Oct 2020

Wafer-level integration of self-aligned high aspect ratio silicon 3D structures using the MACE method with Au, Pd, Pt, Cu, and Ir

  • Mathias Franz,
  • Romy Junghans,
  • Paul Schmitt,
  • Adriana Szeghalmi and
  • Stefan E. Schulz

Beilstein J. Nanotechnol. 2020, 11, 1439–1449, doi:10.3762/bjnano.11.128

Graphical Abstract
  • will be oxidised to the intermediate state SiO2, which is etched by HF. In this case no H2 is formed. Due to the high number of involved holes, this etching mechanism is strongly correlated to the interface of silicon and the noble metal. This regime will lead to a straight silicon etching profile
PDF
Album
Full Research Paper
Published 23 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • [40][41][42][43][44]. However, in thin films comprised of molecules in a standing orientation on SiO2 (long molecular axis perpendicular to the substrate), the IE of PEN decreases to 4.90 eV and the IE of PFP increases to 6.65 eV [45]. The opposite trend of the orientation dependency of the IEs has
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • synthesized using a CVD microreactor method, described in detail in [33], directly on 285 nm SiO2/Si substrates, which also served as the back-gate in the FET configuration. MoS2 flakes were contacted with electrodes using standard electron beam lithography on polymethyl methacrylate (PMMA) resist, followed
  • helium ion microscope chamber (after initial electrical testing to confirm functionality) and were irradiated with the stage tilt angle set to 0°. At this angle of incidence, the helium ion beam ought to produce sulfur vacancies chiefly in the bottom sulfuric layer of the SiO2-supported MoS2 flake [34
  • atomic vacancy yield per each delivered ion as a function of target penetration depth on the 35 nm-Au/5 nm-Ti/0.7 nm-MoS2/285 nm-SiO2 stack [41]. As evident from Figure 3d, the sulfur sputtering yield at the Ti–MoS2 interface is very close to that of unencapsulated MoS2 [15], indicating notable damage to
PDF
Album
Full Research Paper
Published 04 Sep 2020
Other Beilstein-Institut Open Science Activities