Search results

Search for "atomic force microscope" in Full Text gives 187 result(s) in Beilstein Journal of Nanotechnology.

Tuning adhesion forces between functionalized gold colloidal nanoparticles and silicon AFM tips: role of ligands and capillary forces

  • Sven Oras,
  • Sergei Vlassov,
  • Marta Berholts,
  • Rünno Lõhmus and
  • Karine Mougin

Beilstein J. Nanotechnol. 2018, 9, 660–670, doi:10.3762/bjnano.9.61

Graphical Abstract
  • (–COOH), methyl (–CH3), methoxy (–OCH3) or thiol (–SH). The adhesion was measured by atomic force microscope (AFM) equipped with a PeakForce QNM module. The results were also compared to additional adhesion measurements performed on flat Au films functionalized with the same molecular thin film to
  • nanoparticles (NPs) and silicon AFM tip. Adhesion forces were mapped by atomic force microscope equipped with PeakForce QNM mode. It was shown that the adhesion response was significantly affected by the functional nature of the ligands, packing density of the thin molecular films grafted on the NPs, and by the
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Optimisation of purification techniques for the preparation of large-volume aqueous solar nanoparticle inks for organic photovoltaics

  • Furqan Almyahi,
  • Thomas R. Andersen,
  • Nathan A. Cooling,
  • Natalie P. Holmes,
  • Matthew J. Griffith,
  • Krishna Feron,
  • Xiaojing Zhou,
  • Warwick J. Belcher and
  • Paul C. Dastoor

Beilstein J. Nanotechnol. 2018, 9, 649–659, doi:10.3762/bjnano.9.60

Graphical Abstract
  • force microscope (AFM) operated in AC mode was used to probe the nanoparticle films. Film samples for AFM were spin-coated on quartz glass substrates at 2000 rpm for 1 min. A Zeiss Sigma ZP field-emission scanning electron microscope (FESEM) was used to image the nanoparticle films (operating at
  • Attension Theta optical tensiometer (Bionic Scientific Co.) was used to record drop images and automatically analyse the drop shape (pendant drop method using OneAttension software) of ASNP inks and their filtrates in order to measure their surface tension. Film inspection: An Asylum Research Cypher atomic
PDF
Album
Supp Info
Full Research Paper
Published 20 Feb 2018

Periodic structures on liquid-phase smectic A, nematic and isotropic free surfaces

  • Anna N. Bagdinova,
  • Evgeny I. Demikhov,
  • Nataliya G. Borisenko,
  • Sergei M. Tolokonnikov,
  • Gennadii V. Mishakov and
  • Andrei V. Sharkov

Beilstein J. Nanotechnol. 2018, 9, 342–352, doi:10.3762/bjnano.9.34

Graphical Abstract
  • atomic force microscope (AFM) and a scanning near-field optical microscope (SNOM). Images of the SmA phase free surface obtained by the polarized microscope and ISSA are in good correlation and show a well-known focal domain structure. The new periodic stripe structure was observed by scanning near-field
  • , such as interferometric surface structure analyzers (ISSAs, i.e., nanoprofilometer), atomic force microscope (AFM) [5][6][7][8] and a scanning near-field optical microscope (SNOM) [9][10] has been made. To study the liquid crystalline free boundary structures, common nanotechnology tools are used, for
PDF
Album
Full Research Paper
Published 30 Jan 2018

Anchoring of a dye precursor on NiO(001) studied by non-contact atomic force microscopy

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2018, 9, 242–249, doi:10.3762/bjnano.9.26

Graphical Abstract
  • were then annealed 1 h at 150 °C to facilitate the diffusion of the molecules on the substrate. Scanning probe microscopy The measurements were carried out with a custom-built atomic force microscope (AFM) in UHV and at room temperature. All AFM images were recorded in the non-contact mode (nc-AFM
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Nematic topological defects positionally controlled by geometry and external fields

  • Pavlo Kurioz,
  • Marko Kralj,
  • Bryce S. Murray,
  • Charles Rosenblatt and
  • Samo Kralj

Beilstein J. Nanotechnol. 2018, 9, 109–118, doi:10.3762/bjnano.9.13

Graphical Abstract
  • mimic geometric set-ups that could be realized experimentally using, for instance, the atomic force microscope (AFM) scribing method [17]. In a typical experimental set up one confines a nematic LC within a thin plane-parallel cell, where at least one (“master”) surface imposes anchoring conditions
PDF
Album
Full Research Paper
Published 10 Jan 2018

Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au(acac) metal precursors deposited by FEBID

  • Marcos V. Puydinger dos Santos,
  • Aleksandra Szkudlarek,
  • Artur Rydosz,
  • Carlos Guerra-Nuñez,
  • Fanny Béron,
  • Kleber R. Pirota,
  • Stanislav Moshkalev,
  • José Alexandre Diniz and
  • Ivo Utke

Beilstein J. Nanotechnol. 2018, 9, 91–101, doi:10.3762/bjnano.9.11

Graphical Abstract
  • setup. Results and Discussion Deposit morphology characterisation An atomic force microscope (AFM, NT-MDT NTEGRA spectra) was used to determine the thickness and the volume of the FEBID deposits as a function of the annealing temperature. We observed that the deposition rates per rectangle area of 100
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2018

A robust AFM-based method for locally measuring the elasticity of samples

  • Alexandre Bubendorf,
  • Stefan Walheim,
  • Thomas Schimmel and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 1–10, doi:10.3762/bjnano.9.1

Graphical Abstract
  • , pressure or humidity. Since its invention, the atomic force microscope (AFM) [4] has confirmed its value for locally determining nanomechanical properties, such as the Young’s modulus, of the sample surface. Initially, the measures were done qualitatively, with the cantilever operated in intermittent
PDF
Album
Supp Info
Full Research Paper
Published 02 Jan 2018

Robust nanobubble and nanodroplet segmentation in atomic force microscope images using the spherical Hough transform

  • Yuliang Wang,
  • Tongda Lu,
  • Xiaolai Li,
  • Shuai Ren and
  • Shusheng Bi

Beilstein J. Nanotechnol. 2017, 8, 2572–2582, doi:10.3762/bjnano.8.257

Graphical Abstract
  • potential for numerous applications. As a result, the automated segmentation and morphological characterization of NBs and NDs in atomic force microscope (AFM) images is highly awaited. The current segmentation methods suffer from the uneven background in AFM images due to thermal drift and hysteresis of
PDF
Album
Full Research Paper
Published 01 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • atmosphere for a few hours during the transfer from the fabrication facility to the TEM lab. AFM investigations were carried out on a Veeco/Bruker Dimension 3000 atomic force microscope. (a) Schematics of the FEBID experimental set-up. Note that the direction of electron beam movement, i.e., fast scanning
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al2O3 and its application in imprinting lithography

  • Hyojeong Kim,
  • Kristin Arbutina,
  • Anqin Xu and
  • Haitao Liu

Beilstein J. Nanotechnol. 2017, 8, 2363–2375, doi:10.3762/bjnano.8.236

Graphical Abstract
  • different locations. Atomic Force Microscopy: The surface morphologies of a DNA nanostructure master template and a PLLA stamp at each step of fabrication process were imaged using tapping-mode on an MFP-3D atomic force microscope with RTESPA-300, NSC15/Al BS, or SSS-FMR-SPL AFM probes in air at room
PDF
Album
Supp Info
Full Research Paper
Published 09 Nov 2017

Tailoring the nanoscale morphology of HKUST-1 thin films via codeposition and seeded growth

  • Landon J. Brower,
  • Lauren K. Gentry,
  • Amanda L. Napier and
  • Mary E. Anderson

Beilstein J. Nanotechnol. 2017, 8, 2307–2314, doi:10.3762/bjnano.8.230

Graphical Abstract
  • × 500 nm and used a Dimension Icon atomic force microscope (Bruker, Santa Barbara, CA, USA), which was operated in peak force tapping mode. Etched silicon tips, SCANASYST-AIR (Bruker, Santa Barbara, CA, USA), with a spring constant range of 0.2–0.8 N/m and a resonant frequency range of 45–95 kHz were
PDF
Album
Supp Info
Full Research Paper
Published 03 Nov 2017

Material property analytical relations for the case of an AFM probe tapping a viscoelastic surface containing multiple characteristic times

  • Enrique A. López-Guerra and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2230–2244, doi:10.3762/bjnano.8.223

Graphical Abstract
  • even some metals, has been successfully described with linear viscoelastic theory [6][7][8] and its characterization at the nanoscale has been performed by various techniques, where the atomic force microscope (AFM) has played a prominent role. Within AFM, quantitative characterization of viscoelastic
PDF
Album
Supp Info
Full Research Paper
Published 26 Oct 2017

Velocity dependence of sliding friction on a crystalline surface

  • Christian Apostoli,
  • Giovanni Giusti,
  • Jacopo Ciccoianni,
  • Gabriele Riva,
  • Rosario Capozza,
  • Rosalie Laure Woulaché,
  • Andrea Vanossi,
  • Emanuele Panizon and
  • Nicola Manini

Beilstein J. Nanotechnol. 2017, 8, 2186–2199, doi:10.3762/bjnano.8.218

Graphical Abstract
  • of the atomic force microscope (AFM) and its friction force microscope (FFM) variant [6][7][8], as well as the extensive usage of atomistic molecular dynamics (MD) simulations and modeling made possible by the vastly increased computing power availability [9][10][11][12][13][14][15][16]. Despite this
PDF
Album
Full Research Paper
Published 19 Oct 2017

Angstrom-scale flatness using selective nanoscale etching

  • Takashi Yatsui,
  • Hiroshi Saito and
  • Katsuyuki Nobusada

Beilstein J. Nanotechnol. 2017, 8, 2181–2185, doi:10.3762/bjnano.8.217

Graphical Abstract
  • silica. To evaluate the changes in the surface profiles, we used an atomic force microscope (AFM) with a “Sampling Intelligent Scan” mode (Hitachi-Hitech-Science Corp.). The scanning area of the AFM was 10 × 10 μm and 256 × 256 pixels. Results and Discussion Figure 3a–c shows the respective AFM images
PDF
Album
Full Research Paper
Published 18 Oct 2017

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • (without torch). For convenience, the samples casted from the undiluted dispersion are referred to throughout the paper as “thick” and the samples casted from 1:16 dilution are referred to as “thin”. Characterization techniques An Asylum Research MFP-3D atomic force microscope equipped with an ARC2 SPM
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • meaning that the running in period was very short. Microscopic observations The surfaces of Si substrates after the nanotribological tests (3100 cycles) were observed with an optical microscope and then analyzed with an atomic force microscope (AFM) (NanoSurf Easyscan 2) using Si tips (c = 0.2 N·m−1, f0
  • force microscope was used in the nanoscale investigation. Different lubrication regimes were observed at both scales: boundary lubrication at the nanoscale and mixed lubrication the macroscale. In the former case, lubricity was a function of the density of the adsorbed layer; in the latter one, the
  • lubrication of silica surfaces at the macro- and the nanoscale with mixtures of trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate and apolar base oils, such as octane and hexadecane. Macroscale studies were done with a pin-on-disk tribometer under loads of 2 N and 10 N, while an atomic
PDF
Album
Full Research Paper
Published 20 Sep 2017

Evaluation of preparation methods for suspended nano-objects on substrates for dimensional measurements by atomic force microscopy

  • Petra Fiala,
  • Daniel Göhler,
  • Benno Wessely,
  • Michael Stintz,
  • Giovanni Mattia Lazzerini and
  • Andrew Yacoot

Beilstein J. Nanotechnol. 2017, 8, 1774–1785, doi:10.3762/bjnano.8.179

Graphical Abstract
  • dedicated equipment and led to a uniform local distribution of individualized nano-objects. Traceable AFM measurements based on Si and SiO2 coated substrates confirmed the suitability of this technique. Keywords: atomic force microscope; nano-object; particle preparation; Introduction Today
  • Inc., Orem, Utah, USA) were used for instrument calibration. AFM AFM measurements were performed with a traceable atomic force microscope that uses two integrated optical interferometry systems for detecting the deflection of the cantilever and for measuring the vertical motion of the piezoelectric
  • sample preparation for microscopic measurements. Using an atomic force microscope that realizes its traceability directly using an integrated optical interferometer we confirmed the suitability of the technique for producing samples whose dimensions can be measured accurately by AFM. Theoretical surface
PDF
Album
Full Research Paper
Published 28 Aug 2017

Methionine-mediated synthesis of magnetic nanoparticles and functionalization with gold quantum dots for theranostic applications

  • Arūnas Jagminas,
  • Agnė Mikalauskaitė,
  • Vitalijus Karabanovas and
  • Jūrate Vaičiūnienė

Beilstein J. Nanotechnol. 2017, 8, 1734–1741, doi:10.3762/bjnano.8.174

Graphical Abstract
  • measurements were prepared by casting a drop (20 µL) of gold NP solution on freshly cleaved V-1 grade muscovite mica (SPI supplies, USA). The drop of solution was removed after 60s by spinning the sample at 1000 rpm. The commercially available atomic force microscope (AFM) diInnova (Veeco instruments inc., USA
PDF
Album
Full Research Paper
Published 22 Aug 2017

A review of demodulation techniques for amplitude-modulation atomic force microscopy

  • Michael G. Ruppert,
  • David M. Harcombe,
  • Michael R. P. Ragazzon,
  • S. O. Reza Moheimani and
  • Andrew J. Fleming

Beilstein J. Nanotechnol. 2017, 8, 1407–1426, doi:10.3762/bjnano.8.142

Graphical Abstract
  • used digital processing system. As a crucial bandwidth-limiting component in the z-axis feedback loop of an atomic force microscope, the purpose of the demodulator is to obtain estimates of amplitude and phase of the cantilever deflection signal in the presence of sensor noise or additional distinct
  • implementation [1]. Not only is the modulation principle used in many forms of scientific instruments and sensors [2][3][4], but numerous fields of research also rely on the improved detection sensitivity made available by this technique [5][6][7]. While the invention of the atomic force microscope (AFM) [8] in
PDF
Album
Review
Published 10 Jul 2017

BTEX detection with composites of ethylenevinyl acetate and nanostructured carbon

  • Santa Stepina,
  • Astrida Berzina,
  • Gita Sakale and
  • Maris Knite

Beilstein J. Nanotechnol. 2017, 8, 982–988, doi:10.3762/bjnano.8.100

Graphical Abstract
  • the electroconductive mode of an atomic force microscope (AFM; NT-MDT, Smena) and the degree of dispersion of the conductive particles was indirectly determined by a modified method from [24]. The conductive mode of AFM shows us the electroconductive channel system of the sample, which indirectly
PDF
Album
Full Research Paper
Published 04 May 2017

Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy

  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Francesc Pérez-Murano,
  • Enrique Rull Trinidad,
  • Urs Staufer and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 883–891, doi:10.3762/bjnano.8.90

Graphical Abstract
  • cantilevers of an atomic force microscope (AFM) as a function of relevant parameters such as the cantilever force constant, tip radius and free oscillation amplitude as well as the stiffness of the sample’s surface. The simulations reveal a universal functional dependence of the amplitude of the 6th harmonic
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • observed structure–property relationships are specific to organosilicates, we believe the combined demonstration of AFM-IR with CR-AFM should pave the way for a similar nanoscale characterization of other materials where the understanding of such relationships is essential. Keywords: atomic force
  • microscope; contact resonance; infrared spectroscopy; organosilicate; photothermal; Introduction A fundamental objective of materials science and engineering is to understand, control, and exploit the relationships between the structure of a material at various length scales and its properties in order to
PDF
Album
Full Research Paper
Published 13 Apr 2017

Measuring adhesion on rough surfaces using atomic force microscopy with a liquid probe

  • Juan V. Escobar,
  • Cristina Garza and
  • Rolando Castillo

Beilstein J. Nanotechnol. 2017, 8, 813–825, doi:10.3762/bjnano.8.84

Graphical Abstract
  • between a liquid drop and rough surfaces using a conventional atomic force microscope. In this method, a micrometric liquid mercury drop is attached to an AFM tipless cantilever to measure the force required to pull this drop off a rough surface. We test the method with two surfaces: a square array of
  • ; Introduction After the introduction of the atomic force microscope (AFM), it was clear that force-vs-distance curves could be measured using this new instrument and that several fields related to adhesion [1] could be promoted in new directions. One of them was the replacement of the tip with a colloidal
  • measurements during the jump-off-contact process between a micrometric liquid drop attached to an AFM tipless cantilever and rough surfaces. The measurements were made with an atomic force microscope in nitrogen atmosphere. Remarkably, the data naturally cluster around integer multiples of a unit of
PDF
Album
Full Research Paper
Published 10 Apr 2017

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

  • Aurora Piazza,
  • Filippo Giannazzo,
  • Gianpiero Buscarino,
  • Gabriele Fisichella,
  • Antonino La Magna,
  • Fabrizio Roccaforte,
  • Marco Cannas,
  • Franco Mario Gelardi and
  • Simonpietro Agnello

Beilstein J. Nanotechnol. 2017, 8, 418–424, doi:10.3762/bjnano.8.44

Graphical Abstract
  • DI3100 atomic force microscope with Nanoscope V controller working in tapping mode and employing a commercial silicon probe with spring constants of k = 20–80 N·m−1 and oscillation frequencies from 332 to 375 kHz. (a) AFM morphology image and (b) micro-Raman spectra of the as transferred graphene on SiO2
PDF
Album
Full Research Paper
Published 10 Feb 2017

Multimodal cantilevers with novel piezoelectric layer topology for sensitivity enhancement

  • Steven Ian Moore,
  • Michael G. Ruppert and
  • Yuen Kuan Yong

Beilstein J. Nanotechnol. 2017, 8, 358–371, doi:10.3762/bjnano.8.38

Graphical Abstract
  • Steven Ian Moore Michael G. Ruppert Yuen Kuan Yong The School of Electrical Engineering and Computer Science, The University of Newcastle, Callaghan NSW 2308, Australia 10.3762/bjnano.8.38 Abstract Self-sensing techniques for atomic force microscope (AFM) cantilevers have several advantageous
  • multifrequency AFM and has the potential to provide higher resolution imaging on higher order modes. Keywords: atomic force microscopy; multifrequency AFM; multimodal AFM; piezoelectric cantilever, self-sensing; Introduction The invention of the atomic force microscope (AFM) [1] provided for the observation of
PDF
Album
Full Research Paper
Published 06 Feb 2017
Other Beilstein-Institut Open Science Activities