Search results

Search for "bimodal" in Full Text gives 84 result(s) in Beilstein Journal of Nanotechnology.

Plasticity of nanocrystalline alloys with chemical order: on the strength and ductility of nanocrystalline Ni–Fe

  • Jonathan Schäfer and
  • Karsten Albe

Beilstein J. Nanotechnol. 2013, 4, 542–553, doi:10.3762/bjnano.4.63

Graphical Abstract
  • strengthening but does not increase the room temperature ductility [10]. It was demonstrated experimentally, that additional modifications, e.g., a bimodal grain structure and nanotwins can enhance the ductility while conserving the strength [10]. For nc Ni–Fe alloys, several observations were made: For nc
PDF
Album
Full Research Paper
Published 19 Sep 2013

Multiple regimes of operation in bimodal AFM: understanding the energy of cantilever eigenmodes

  • Daniel Kiracofe,
  • Arvind Raman and
  • Dalia Yablon

Beilstein J. Nanotechnol. 2013, 4, 385–393, doi:10.3762/bjnano.4.45

Graphical Abstract
  • property contrast with high resolution. Bimodal AFM, where two eigenmodes are simultaneously excited, confers significant advantages over conventional single-frequency tapping mode AFM due to its ability to provide contrast between regions with different material properties under gentle imaging conditions
  • . Bimodal AFM traditionally uses the first two eigenmodes of the AFM cantilever. In this work, the authors explore the use of higher eigenmodes in bimodal AFM (e.g., exciting the first and fourth eigenmodes). It is found that such operation leads to interesting contrast reversals compared to traditional
  • bimodal AFM. A series of experiments and numerical simulations shows that the primary cause of the contrast reversals is not the choice of eigenmode itself (e.g., second versus fourth), but rather the relative kinetic energy between the higher eigenmode and the first eigenmode. This leads to the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2013

Optimal geometry for a quartz multipurpose SPM sensor

  • Julian Stirling

Beilstein J. Nanotechnol. 2013, 4, 370–376, doi:10.3762/bjnano.4.43

Graphical Abstract
  • 23.5. Examining the plot it is clear that tip lengths near 1.47 mm are unusable as the two eigenfrequencies are too close. This would make it difficult to selectively excite them, as well as require long averaging times in bimodal operation to remove any correlation between the modes. The benefit of
PDF
Album
Supp Info
Full Research Paper
Published 17 Jun 2013
Graphical Abstract
  • Daniel Ebeling Santiago D. Solares Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA 10.3762/bjnano.4.20 Abstract We present an overview of the bimodal amplitude–frequency-modulation (AM-FM) imaging mode of atomic force microscopy (AFM), whereby the
  • fundamental eigenmode is driven by using the amplitude-modulation technique (AM-AFM) while a higher eigenmode is driven by using either the constant-excitation or the constant-amplitude variant of the frequency-modulation (FM-AFM) technique. We also offer a comparison to the original bimodal AFM method, in
  • 2004 Garcia and co-workers [2] reported on computational simulations of a bimodal AFM technique for the simultaneous imaging of topography and mapping of compositional contrast across the sample. Within their method the fundamental cantilever eigenmode was used to acquire the sample topography through
PDF
Album
Full Research Paper
Published 18 Mar 2013

Repulsive bimodal atomic force microscopy on polymers

  • Alexander M. Gigler,
  • Christian Dietz,
  • Maximilian Baumann,
  • Nicolás F. Martinez,
  • Ricardo García and
  • Robert W. Stark

Beilstein J. Nanotechnol. 2012, 3, 456–463, doi:10.3762/bjnano.3.52

Graphical Abstract
  • and Department of Materials Sciences, Technische Universität Darmstadt, Petersenstr. 32, 64287 Darmstadt, Germany Instituto de Microelectrónica de Madrid, c/ Isaac Newton 8, Tres Cantos, 28760 Madrid, Spain 10.3762/bjnano.3.52 Abstract Bimodal atomic force microscopy can provide high-resolution
  • images of polymers. In the bimodal operation mode, two eigenmodes of the cantilever are driven simultaneously. When examining polymers, an effective mechanical contact is often required between the tip and the sample to obtain compositional contrast, so particular emphasis was placed on the repulsive
  • regime of dynamic force microscopy. We thus investigated bimodal imaging on a polystyrene-block-polybutadiene diblock copolymer surface and on polystyrene. The attractive operation regime was only stable when the amplitude of the second eigenmode was kept small compared to the amplitude of the
PDF
Album
Full Research Paper
Published 20 Jun 2012

Theoretical study of the frequency shift in bimodal FM-AFM by fractional calculus

  • Elena T. Herruzo and
  • Ricardo Garcia

Beilstein J. Nanotechnol. 2012, 3, 198–206, doi:10.3762/bjnano.3.22

Graphical Abstract
  • Elena T. Herruzo Ricardo Garcia IMM-Instituto de Microelectrónica de Madrid (CSIC). C Isaac Newton 8, 28760 Madrid, Spain 10.3762/bjnano.3.22 Abstract Bimodal atomic force microscopy is a force-microscopy method that requires the simultaneous excitation of two eigenmodes of the cantilever. This
  • Lennard-Jones and Derjaguin–Muller–Toporov forces. Keywords: AFM; atomic force microscopy; bimodal AFM; frequency shift; integral calculus applications; Introduction Since the invention of the atomic force microscope (AFM) [1], numerous AFM studies have been pursued in order to extract information from
  • modulus of samples in air [14] and liquids [29][30][31]. Bimodal AFM [32][33] is a force-microscopy method that allows quantitative mapping of the sample properties (Figure 1). Bimodal AFM operates by exciting simultaneously the cantilever at its first and second flexural resonances. The technique
PDF
Album
Full Research Paper
Published 07 Mar 2012

Platinum nanoparticles from size adjusted functional colloidal particles generated by a seeded emulsion polymerization process

  • Nicolas Vogel,
  • Ulrich Ziener,
  • Achim Manzke,
  • Alfred Plettl,
  • Paul Ziemann,
  • Johannes Biskupek,
  • Clemens K. Weiss and
  • Katharina Landfester

Beilstein J. Nanotechnol. 2011, 2, 459–472, doi:10.3762/bjnano.2.50

Graphical Abstract
  • , massive secondary nucleation took place, leading to bimodal size distributions. In the first case (0.05 wt % SDS), the size enhanced seed particles feature an excellent monodispersity and have a size of approximately 600 nm, indicating a more stable course of reaction. In contrast, higher amounts of SDS
PDF
Album
Video
Full Research Paper
Published 18 Aug 2011

Review and outlook: from single nanoparticles to self-assembled monolayers and granular GMR sensors

  • Alexander Weddemann,
  • Inga Ennen,
  • Anna Regtmeier,
  • Camelia Albon,
  • Annalena Wolff,
  • Katrin Eckstädt,
  • Nadine Mill,
  • Michael K.-H. Peter,
  • Jochen Mattay,
  • Carolin Plattner,
  • Norbert Sewald and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2010, 1, 75–93, doi:10.3762/bjnano.1.10

Graphical Abstract
  • is enhanced which can result in disk-shaped nanocrystals. In subplot (c), a bimodal particle distribution can be found. The two distinct sizes as shown in (d) result from different binding affinities of the tensides to the metal surface: Smaller particles are mainly stabilized by the dendrimer
  • ferromagnetic particles mutually align their magnetic dipole moments which entails an attractive coupling and may result in different geometrical patterns such as particle chains or rings [55][56]. An example of a dipole interaction dominated arrangement is shown in Figure 10(a): Co particles with a bimodal
PDF
Album
Review
Published 22 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • effective anisotropy Keff of FePt and CoPt is determined by simple Stoner–Wohlfarth approach using a bimodal distribution of Keff. Finally in section 4, the first results on Au photoseeding of Co NPs are presented. 1. Preparation of supported nanoparticles 1.1 General preparation route based on micelles As
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities