Search results

Search for "biomimetic" in Full Text gives 124 result(s) in Beilstein Journal of Nanotechnology.

Biological and biomimetic materials and surfaces

  • Stanislav Gorb and
  • Thomas Speck

Beilstein J. Nanotechnol. 2017, 8, 403–407, doi:10.3762/bjnano.8.42

Graphical Abstract
  • some biomimetic products, for example, the facade paint Lotusan® produced by Sto SEA Pte. [7] or the product Tegotop® 210 from Evonik Industries AG. The products are sold under the brand name Lotus-Effect® which has become a near synonym for functional, water-repellent surfaces in general. Without
  • exaggeration one can say that Lotus-Effect® surfaces, together with fasteners inspired by gecko attachment structures, can be considered as “flagships” of contemporary surface-related biomimetic research. Still today questions related to these effects are the topic of novel state-of-the-art studies in the
  • Technology (KIT) [8]. The biomimetic potential of this effect was first understood in the early 2000s by Wilhelm Barthlott. The swimming ferns of the genus Salvinia, but also other swimming and diving organisms (e.g., some spider and bug species as well as a few birds and mammals), typically possess double
PDF
Editorial
Published 08 Feb 2017

Impact of surface wettability on S-layer recrystallization: a real-time characterization by QCM-D

  • Jagoba Iturri,
  • Ana C. Vianna,
  • Alberto Moreno-Cencerrado,
  • Dietmar Pum,
  • Uwe B. Sleytr and
  • José Luis Toca-Herrera

Beilstein J. Nanotechnol. 2017, 8, 91–98, doi:10.3762/bjnano.8.10

Graphical Abstract
  • of atomic force microscopy for topographical analysis of the resulting crystal-like films. The results are compared with the biomimetic case found in bacteria represented by the interaction of SbpA with a secondary cell-wall polymer (SCWP), which specifically recognizes the N-terminal region of the S
PDF
Album
Full Research Paper
Published 11 Jan 2017

Structural and tribometric characterization of biomimetically inspired synthetic "insect adhesives"

  • Matthias W. Speidel,
  • Malte Kleemeier,
  • Andreas Hartwig,
  • Klaus Rischka,
  • Angelika Ellermann,
  • Rolf Daniels and
  • Oliver Betz

Beilstein J. Nanotechnol. 2017, 8, 45–63, doi:10.3762/bjnano.8.6

Graphical Abstract
  • droplet distribution. The purpose of our contribution is not to present completely new kinds of emulsion, but to use emulsions in a biomimetic context. Due to the small amounts of attainable natural tarsal secretions, it is hardly possible to determine their droplet sizes and other emulsion parameters
  • . Therefore, the artificial emulsions prepared and used in the present contribution are used as rough models to indirectly deduce how the biological adhesives are probably structured and how they perform. This is the reason why we follow a typical process sequence of biomimetic research [32], i.e., we intend
  • experimental approaches, our "biomimetic approach" will help to (i) understand possible structural and functional principles that make up such adhesives and (ii) develop technical protocols how to test and mimick them. On a long term perspective, such approaches will help to technically utilize insect tarsal
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2017

When the going gets rough – studying the effect of surface roughness on the adhesive abilities of tree frogs

  • Niall Crawford,
  • Thomas Endlein,
  • Jonathan T. Pham,
  • Mathis Riehle and
  • W. Jon P. Barnes

Beilstein J. Nanotechnol. 2016, 7, 2116–2131, doi:10.3762/bjnano.7.201

Graphical Abstract
  • [52], and the adhesive setae of geckos [53] the toe pads of tree frogs exhibit significant biomimetic potential to advance the technology of surface engineering. This is because they combine high friction under wet conditions [3] with self-cleaning [33]. Their main applications will likely be in the
PDF
Album
Supp Info
Full Research Paper
Published 30 Dec 2016

The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

  • Florian Antony,
  • Rainer Grießhammer,
  • Thomas Speck and
  • Olga Speck

Beilstein J. Nanotechnol. 2016, 7, 2100–2115, doi:10.3762/bjnano.7.200

Graphical Abstract
  • discussed among scientists, business leaders, politicians and those responsible for project funding. The objective of this paper is to contribute to this controversial debate by presenting the sustainability assessment of one of the most well-known and most successful biomimetic products: the façade paint
  • Lotusan®. Results: As a first step it has been examined and verified that the façade paint Lotusan® is correctly defined as a biomimetic product. Secondly, Lotusan® has been assessed and compared to a conventional façade paint within the course of a detailed product sustainability assessment (PROSA). For
  • paints arise from the respective service life, which are presented in terms of four scenario analyses. Conclusion: In summary, the biomimetic façade paint Lotusan® has been identified as a cost-effective and at the same time resource-saving product. Based on the underlying data and assumptions it could
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2016

3D printing of mineral–polymer bone substitutes based on sodium alginate and calcium phosphate

  • Aleksey A. Egorov,
  • Alexander Yu. Fedotov,
  • Anton V. Mironov,
  • Vladimir S. Komlev,
  • Vladimir K. Popov and
  • Yury V. Zobkov

Beilstein J. Nanotechnol. 2016, 7, 1794–1799, doi:10.3762/bjnano.7.172

Graphical Abstract
  • biomimetic approach in which 3D printing of composite structures involves a chemical interaction of the polymer slurry with a liquid “ink”, leading to in situ formation of a CP phase in the final product. It is well known that alginate allows precipitation of inorganic phases within its macromolecular
  • printed samples can be adjusted further by chemical post-treatment. For instance, the hydrolysis of DCPD might lead to the development of an octacalcium phosphate phase and an adhesive effect between particles could take place [17]. Conclusion We propose a new “biomimetic + 3D printing” approach for
PDF
Album
Letter
Published 21 Nov 2016

Biomechanics of selected arborescent and shrubby monocotyledons

  • Tom Masselter,
  • Tobias Haushahn,
  • Samuel Fink and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 1602–1619, doi:10.3762/bjnano.7.154

Graphical Abstract
  • ). This assumption is verified by the good accordance of the calculated values of the axial Young’s modulus via the Voigt model. The higher strength of fibrous bundles in the periphery is also vital for the support of (peripherally developing) branches in D. marginata. Biomimetic approaches and outlook
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2016

Viability and proliferation of endothelial cells upon exposure to GaN nanoparticles

  • Tudor Braniste,
  • Ion Tiginyanu,
  • Tibor Horvath,
  • Simion Raevschi,
  • Serghei Cebotari,
  • Marco Lux,
  • Axel Haverich and
  • Andres Hilfiker

Beilstein J. Nanotechnol. 2016, 7, 1330–1337, doi:10.3762/bjnano.7.124

Graphical Abstract
  • of premature tissue damage and dispensing of medications. Nature supplies many examples of biomimetic materials in the form of organic/inorganic components such as bone, teeth, and muscle. Based on biological examples, new and innovative biological materials can be designed through self-organization
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • , Germany 10.3762/bjnano.7.80 Abstract Structure and function of many transmembrane proteins are affected by their environment. In this respect, reconstitution of a membrane protein into a biomimetic polymer membrane can alter its function. To overcome this problem we used membranes formed by poly(1,4
  • -isoprene-block-ethylene oxide) block copolymers blended with 1,2-diphytanoyl-sn-glycero-3-phosphocholine. By reconstituting the outer membrane protein OmpF from Escherichia coli into these membranes, we demonstrate functionality of this protein in biomimetic lipopolymer membranes, independent of the
  • been assessed yet [46][47]. In the present work, we studied the reconstitution of OmpF from Escherichia coli into biomimetic lipopolymer membranes, generated by self-assembly of amphiphilic poly(1,4-isoprene-block-ethylene oxide) block copolymers (PIPEO) and 1,2-diphytanoyl-sn-glycero-3-phosphocholine
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps

  • Simon Poppinga,
  • Tim Kampowski,
  • Amélie Metzger,
  • Olga Speck and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 664–674, doi:10.3762/bjnano.7.59

Graphical Abstract
  • . Moreover, opening kinematics of young and adult Dionaea snap traps reveal that reverse snap buckling is not performed, corroborating the assumption that growth takes place on certain trap lobe regions. Our findings are discussed in an evolutionary, biomechanical, functional–morphological and biomimetic
  • of snapping [2][20][21][22][23]. Our observations on the different modes of trap closing could be of potential interest for biomimetic approaches [24] where fast and large-scale deformation of thin shells as well as principles for generation, storage and release of elastic energy are important. As
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • , biological and biomimetic processes are attracting the attention of researchers due to their viability and potential in minimization of waste [62][92]. For example, synthesis of NPs in bio-directed systems and using bio-molecules as templates for production of inorganic molecules has attracted biologists and
PDF
Album
Review
Published 10 Dec 2015

DNA–melamine hybrid molecules: from self-assembly to nanostructures

  • Rina Kumari,
  • Shib Shankar Banerjee,
  • Anil K. Bhowmick and
  • Prolay Das

Beilstein J. Nanotechnol. 2015, 6, 1432–1438, doi:10.3762/bjnano.6.148

Graphical Abstract
  • molecules can result in unique DNA-based nanostructures for application in molecular and cellular biophysics, as biomimetic systems, in energy transfer and photonics, and in diagnostics and therapeutics [18][19][20][21]. Moreover, as a bottom-up technique, such a methodology can contribute to molecular
PDF
Album
Supp Info
Letter
Published 30 Jun 2015

Self-assembled anchor layers/polysaccharide coatings on titanium surfaces: a study of functionalization and stability

  • Ognen Pop-Georgievski,
  • Dana Kubies,
  • Josef Zemek,
  • Neda Neykova,
  • Roman Demianchuk,
  • Eliška Mázl Chánová,
  • Miroslav Šlouf,
  • Milan Houska and
  • František Rypáček

Beilstein J. Nanotechnol. 2015, 6, 617–631, doi:10.3762/bjnano.6.63

Graphical Abstract
  • anchoring layers of self-assembled bisphosphonate neridronate monolayers and polymer films of 3-aminopropyltriethoxysilane and biomimetic poly(dopamine). These were further used to bind a bio-functional alginate coating. The success of the titanium surface activation, anchoring layer formation and alginate
  • established continuity of the layers are examined by scanning electron microscopy, surface profilometry and atomic force microscopy. The changes in hydrophilicity after each modification step are further examined by contact angle goniometry. Keywords: alginate; biomimetic surfaces; bisphosphonates
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2015

Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings

  • Francesco De Nicola,
  • Paola Castrucci,
  • Manuela Scarselli,
  • Francesca Nanni,
  • Ilaria Cacciotti and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 353–360, doi:10.3762/bjnano.6.34

Graphical Abstract
  • hierarchical morphology is reversed (bigger MWCNT scale superimposed on the smaller SWCNT scale), thereby losing the hierarchical fakir effect [7][43]. Therefore, the SWCNT/MWCNT sample has the best hydrophobic behavior because is the most biomimetic. We remark that the large deviation of the average value of
PDF
Album
Full Research Paper
Published 02 Feb 2015

Oxygen-plasma-modified biomimetic nanofibrous scaffolds for enhanced compatibility of cardiovascular implants

  • Anna Maria Pappa,
  • Varvara Karagkiozaki,
  • Silke Krol,
  • Spyros Kassavetis,
  • Dimitris Konstantinou,
  • Charalampos Pitsalidis,
  • Lazaros Tzounis,
  • Nikos Pliatsikas and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2015, 6, 254–262, doi:10.3762/bjnano.6.24

Graphical Abstract
  • of these biomimetic tissue-engineering constructs as efficient coatings for enhanced compatibility of cardiovascular implants. Keywords: cardiovascular implants; electrospun nanofibers; plasma treatment; scaffold; tissue engineering; Introduction Cardiovascular diseases represent one of the major
  • ideal material should degrade and remodel with autologous cells into a natural structure [3] while the surface should be able to guide the process of tissue formation. To this end, biomimetic surface coatings and modifications using appropriate durable and biocompatible nanomaterials have already been
  • properties along with the topographical nanoscale features of the scaffolds could be very useful in the design of novel biomimetic coatings, able to guide tissue regeneration especially in cardiovascular implant industry, where in situ vascular regeneration remains an unmet challenge. Experimental Scaffold
PDF
Album
Full Research Paper
Published 22 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • Discussion Synthetic concept It is the aim to synthesize a material of larger dimensions by developing a multifunctional biomimetic composite structure, which combines properties of two biominerals in one and the same material, namely nacre and chiton teeth. To reach this goal we follow the key synthesis
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

  • Daniel Gandyra,
  • Stefan Walheim,
  • Stanislav Gorb,
  • Wilhelm Barthlott and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2015, 6, 11–18, doi:10.3762/bjnano.6.2

Graphical Abstract
  • outgrowths such as hairs or trichomes, which widely occur on biological surfaces, sometimes have unique adhesive and elastic properties optimally adapted to specific functional requirements. As these are often mimicked in technical applications, their characterization is of great interest in a biomimetic
  • interface by the trichome tips which hold it under perturbations without the loss of air by bubble formation. Although the adhesive force of small elastic structures play a key role in understanding biological and biomimetic structures (as well as sensors, micromechanical or microfluidic systems), the
  • biomimetic surfaces. To demonstrate the wide range of applications of this method, we also investigated human head hairs as a second example. Finally, calibrated atomic force microscopy (AFM) cantilevers were tested as a representative for an artificial micromechanical system, which at the same time allowed
PDF
Album
Video
Full Research Paper
Published 02 Jan 2015

Nanobioarchitectures based on chlorophyll photopigment, artificial lipid bilayers and carbon nanotubes

  • Marcela Elisabeta Barbinta-Patrascu,
  • Stefan Marian Iordache,
  • Ana Maria Iordache,
  • Nicoleta Badea and
  • Camelia Ungureanu

Beilstein J. Nanotechnol. 2014, 5, 2316–2325, doi:10.3762/bjnano.5.240

Graphical Abstract
  • (obtained by hydration of a dipalmitoyl phosphatidylcholine thin film) with and without cholesterol were labelled with a natural photopigment (chlorophyll a), which functioned as a sensor to detect modifications in the artificial lipid bilayers. These biomimetic membranes were used to build non-covalent
  • interest in the fields of nanotechnology and biomedicine [1][2][3]. Special attention has been paid to biomimetic membranes that convey biocompatibility to the hybrid materials [4][5][6][7]. One of the building blocks used to construct nanomaterials are carbon nanotubes (CNTs), which are allotropes of
  • cholesterol (Zaverage = 609.8 ± 112.7; PDI = 0.397 ± 0.053). Chla inserted into the lipid bilayers of liposomes was used as a spectral sensor to monitor the events occurring in the biomimetic membranes. The visible absorption spectra of the samples were normalized versus the absorption at the maximum peak
PDF
Album
Full Research Paper
Published 02 Dec 2014

Anticancer efficacy of a supramolecular complex of a 2-diethylaminoethyl–dextran–MMA graft copolymer and paclitaxel used as an artificial enzyme

  • Yasuhiko Onishi,
  • Yuki Eshita,
  • Rui-Cheng Ji,
  • Masayasu Onishi,
  • Takashi Kobayashi,
  • Masaaki Mizuno,
  • Jun Yoshida and
  • Naoji Kubota

Beilstein J. Nanotechnol. 2014, 5, 2293–2307, doi:10.3762/bjnano.5.238

Graphical Abstract
  • been shown. In addition, proteins, Langmuir–Blodgett films (a self-organizing film), and liquid crystals have been studied as supramolecular assemblies. Moreover, the development of biomimetic polymers by using new supramolecular assemblies is expected, such as artificial enzymes with highly selective
  • protein and he noted that when a protein is a giant molecule, it can react as an enzyme [31]. However, different from a general catalyst, the formation of an enzyme complex is possible in the presence of large molecular subunits within the enzyme. Accordingly, biomimetic supramolecular assemblies
PDF
Album
Review
Published 01 Dec 2014

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • origin and synthetic, have been used as controlling agents for crystallization. This field of the so-called “polymer-controlled crystallization” has been reviewed in detail in several publications of Cölfen and collaborators [9][10][11][12]. Among the different natural or biomimetic polymers studied, we
  • vivo mineralization, trying to study the effects of natural macromolecules [30]. Silicateins, for instance, are proteins not only used ex vivo for understanding mineralization processes in sponges, but also applied to prepare novel biomimetic hybrid materials, as nicely revised in a recent publication
  • groups were shown to have an effect on the growth and on the final properties of inorganic materials such as zinc oxide [40][41], calcium oxalate [38], or calcium carbonate [42][43]. It is expectable that analogous effects should be obtained when biopolymeric (or synthetic biomimetic chains) are attached
PDF
Album
Review
Published 17 Nov 2014
Graphical Abstract
  • interactions [23][24]. However, they interact with the silicic acid/silica species via hydrogen bonding and possibly hydrophobic interactions. These interactions even result in the stabilization of mono- and disilicic acid species [22][23]. The described observations have meanwhile lead to numerous biomimetic
PDF
Album
Full Research Paper
Published 06 Nov 2014

Carbon-based smart nanomaterials in biomedicine and neuroengineering

  • Antonina M. Monaco and
  • Michele Giugliano

Beilstein J. Nanotechnol. 2014, 5, 1849–1863, doi:10.3762/bjnano.5.196

Graphical Abstract
  • Computer Science, University of Sheffield, S1 4DP Sheffield, UK 10.3762/bjnano.5.196 Abstract The search for advanced biomimetic materials that are capable of offering a scaffold for biological tissues during regeneration or of electrically connecting artificial devices with cellular structures to restore
PDF
Album
Correction
Review
Published 23 Oct 2014

Real-time monitoring of calcium carbonate and cationic peptide deposition on carboxylate-SAM using a microfluidic SAW biosensor

  • Anna Pohl and
  • Ingrid M. Weiss

Beilstein J. Nanotechnol. 2014, 5, 1823–1835, doi:10.3762/bjnano.5.193

Graphical Abstract
  • a buffer system similar to biomineralizing compartments. It can be concluded that multichannel microfluidic SAW sensor systems are highly attractive for biomimetic mineralization studies in liquids and in real-time. It remains subject to further investigations whether this technique will bring the
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2014

From sticky to slippery: Biological and biologically-inspired adhesion and friction

  • Stanislav N. Gorb and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2014, 5, 1450–1451, doi:10.3762/bjnano.5.157

Graphical Abstract
  • theoretical studies which range from insect adhesion, bacterial adhesion and skin friction to artificial biomimetic systems, e.g., snake-skin inspired polymer patterns or gecko tape. The Thematic Series does not attempt to give a comprehensive overview of the emerging field of biological contact mechanics
PDF
Album
Video
Editorial
Published 03 Sep 2014

Model systems for studying cell adhesion and biomimetic actin networks

  • Dorothea Brüggemann,
  • Johannes P. Frohnmayer and
  • Joachim P. Spatz

Beilstein J. Nanotechnol. 2014, 5, 1193–1202, doi:10.3762/bjnano.5.131

Graphical Abstract
  • various such integrins have been studied by incorporating the proteins into lipid membranes. These proteolipid structures lay the foundation for the development of artificial cells, which are able to adhere to substrates. To build biomimetic models for studying cell shape and spreading, actin networks can
  • integrin reconstitution in GUVs to date was published in 2008. Streicher et al. developed a novel biomimetic system based on giant vesicles that mimicked the first steps of integrin-mediated cell adhesion [54]. GUVs were produced from small liposomes by electroformation and had a diameter of 20 to 40 μm
  • cytoskeleton in natural cells is to stabilise more integrins in the adhesion zones to form focal adhesion spots by recruiting FAK and other cytoplasmic proteins. 3. Biomimetic actin cortices in lipid vesicles Due to the importance of actin in cell adhesion several studies have already been presented on the
PDF
Album
Review
Published 01 Aug 2014
Other Beilstein-Institut Open Science Activities