Search results

Search for "bottom-up" in Full Text gives 141 result(s) in Beilstein Journal of Nanotechnology.

The interplay between spin densities and magnetic superexchange interactions: case studies of mono- and trinuclear bis(oxamato)-type complexes

  • Azar Aliabadi,
  • Bernd Büchner,
  • Vladislav Kataev and
  • Tobias Rüffer

Beilstein J. Nanotechnol. 2017, 8, 2245–2256, doi:10.3762/bjnano.8.224

Graphical Abstract
  • of type-II complexes stated that “[…]The oxamide moiety bridging two metal ions […] serve as a pathway through which electron spin interactions takes place and their copper complexes […] are magnetically subnormal[…]” [15]. The beauty of this “bottom-up” approach, i.e., the addition of transition
PDF
Album
Review
Published 27 Oct 2017

A systematic study of the controlled generation of crystalline iron oxide nanoparticles on graphene using a chemical etching process

  • Peter Krauß,
  • Jörg Engstler and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2017, 8, 2017–2025, doi:10.3762/bjnano.8.202

Graphical Abstract
  • -down and bottom-up approaches to synthesize and isolate graphene, each having their own advantages and disadvantages [5][6][7][8][9][10][11][12]. The most common route to synthesize continuous, large-area graphene is chemical vapor deposition (CVD) using a carbon precursor on a planar metal catalyst
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2017

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • nanotechnology, it is a bottom-up technique. Layer growth from zero level passes through several stages until the single grains have built a coherent film. This process is visualized with scanning electron microscopy (SEM). PPX layer: The cap layer must meet at least two requirements. First, it must protect the
PDF
Album
Full Research Paper
Published 22 Sep 2017

(Metallo)porphyrins for potential materials science applications

  • Lars Smykalla,
  • Carola Mende,
  • Michael Fronk,
  • Pablo F. Siles,
  • Michael Hietschold,
  • Georgeta Salvan,
  • Dietrich R. T. Zahn,
  • Oliver G. Schmidt,
  • Tobias Rüffer and
  • Heinrich Lang

Beilstein J. Nanotechnol. 2017, 8, 1786–1800, doi:10.3762/bjnano.8.180

Graphical Abstract
  • Nanosciences, IFW Dresden, Helmholtzstrasse 20, 01069 Dresden, Germany 10.3762/bjnano.8.180 Abstract The bottom-up approach to replace existing devices by molecular-based systems is a subject that attracts permanently increasing interest. Molecular-based devices offer not only to miniaturize the device
PDF
Album
Review
Published 29 Aug 2017

Luminescent supramolecular hydrogels from a tripeptide and nitrogen-doped carbon nanodots

  • Maria C. Cringoli,
  • Slavko Kralj,
  • Marina Kurbasic,
  • Massimo Urban and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2017, 8, 1553–1562, doi:10.3762/bjnano.8.157

Graphical Abstract
  • electron transfer and redox properties. There are two main methods to synthesize CNDs: top-down (e.g., laser ablation, electrochemical synthesis) and bottom-up (e.g., combustion, microwave irradiation) [1][2]. In particular, the use of microwave (MW) irradiation is an interesting synthetic approach, which
PDF
Album
Supp Info
Full Research Paper
Published 01 Aug 2017

Micro- and nano-surface structures based on vapor-deposited polymers

  • Hsien-Yeh Chen

Beilstein J. Nanotechnol. 2017, 8, 1366–1374, doi:10.3762/bjnano.8.138

Graphical Abstract
  • have recently attracted considerable attention. The multifunctional, gradient, and/or synergistic activities of using such interfaces are also discussed. Finally, an emerging discovery of selective deposition of polymer coatings and the bottom-up patterning approach by using the selective deposition
PDF
Album
Review
Published 04 Jul 2017

Nanotopographical control of surfaces using chemical vapor deposition processes

  • Meike Koenig and
  • Joerg Lahann

Beilstein J. Nanotechnol. 2017, 8, 1250–1256, doi:10.3762/bjnano.8.126

Graphical Abstract
  • , polarity or interaction with adsorbing monomers. Additionally, the introduction of porogens during the deposition process and the deposition at an oblique angle are methods that have been reported to lead to the formation of three-dimensional polymer structures. With these bottom-up approaches, structured
PDF
Album
Review
Published 12 Jun 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • as artificial cells [2], controlled transport and delivery of chemical agents (e.g., pharmaceutical drugs) [3], catalysis [4], lithium batteries [5] and confined reaction compartments (nanoreactors) [1]. Most fabrication methods of nanocages are based on bottom-up techniques, mainly colloidal and sol
PDF
Album
Full Research Paper
Published 08 Jun 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • and height much smaller than the wavelength of typical plasmon resonances. Different top-down or bottom-up fabrication techniques have been introduced to produce metal nanostructures with active plasmonic reactivity [14]. For example, ion beam sputtering (IBS) is a widely employed bottom-up technique
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • different chemical functionalisation processes [37][38]. Graphene prepared by the first three processes has the highest quality in terms of structure and properties. The different processes for the synthesis of graphene can be classified into two main categories: bottom-up approaches and top-down approaches
  • (Figure 1). Bottom-up growth of graphene includes micromechanical exfoliation of bulk graphite. The processes included in the bottom-up synthesis of graphene are CVD [39][40], arc discharge [41], and epitaxial growth [42]. Using CVD, graphene and few-layer graphene have been grown on catalytic metal
PDF
Album
Review
Published 24 Mar 2017

Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

  • Marta Agati,
  • Guillaume Amiard,
  • Vincent Le Borgne,
  • Paola Castrucci,
  • Richard Dolbec,
  • Maurizio De Crescenzi,
  • My Alì El Khakani and
  • Simona Boninelli

Beilstein J. Nanotechnol. 2017, 8, 440–445, doi:10.3762/bjnano.8.47

Graphical Abstract
  • within the plasma reactor. Both the STEM tomography and STEM-EDX analysis contributed to gain further insight into the self-assembly process. In the long-term, this approach might be used to optimize the synthesis of VLS-grown SiNWs via ICP as a competitive technique to the well-established bottom-up
  • of the sequential steps required to achieve the desired nanostructure and to the scaling up of such procedures. On the other hand, bottom-up approaches, founded on the aggregation of atoms or molecules as elementary components for the synthesis of nanomaterials, seem to be a good strategy to
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2017

Association of aescin with β- and γ-cyclodextrins studied by DFT calculations and spectroscopic methods

  • Ana I. Ramos,
  • Pedro D. Vaz,
  • Susana S. Braga and
  • Artur M. S. Silva

Beilstein J. Nanotechnol. 2017, 8, 348–357, doi:10.3762/bjnano.8.37

Graphical Abstract
  • SCARF cluster. Thanks are also due to the COST Action MP1202: Rational design of hybrid organic-inorganic interfaces) and to the COST Action MP 1302 Nanospectroscopy, where parts of the findings presented in this manuscript have been previously presented, as shown: – MP1202: HINT Training School “Bottom
  • -up Approaches of Hybrid Materials: Preparation and Design” (26–28 May 2015, Ljubljana, Slovenia) - poster communication “Inclusion of aescin into beta and gamma cyclodextrins”; HINT General Scientific Workshop and Review Meeting (12–14 October 2015, Milan, Italy) – oral communication “Nano
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2017

The cleaner, the greener? Product sustainability assessment of the biomimetic façade paint Lotusan® in comparison to the conventional façade paint Jumbosil®

  • Florian Antony,
  • Rainer Grießhammer,
  • Thomas Speck and
  • Olga Speck

Beilstein J. Nanotechnol. 2016, 7, 2100–2115, doi:10.3762/bjnano.7.200

Graphical Abstract
  • results in basic biological research, the initial description of self-cleaning properties was done by the German biologist Wilhelm Barthlott in the late 1970s. This became the starting point for the development of Lotusan® [28][29], a perfect example of a bottom-up process in biomimetics [1
PDF
Album
Supp Info
Full Research Paper
Published 29 Dec 2016

Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling

  • Nadezhda M. Zholobak,
  • Anton L. Popov,
  • Alexander B. Shcherbakov,
  • Nelly R. Popova,
  • Mykhailo M. Guzyk,
  • Valeriy P. Antonovich,
  • Alla V. Yegorova,
  • Yuliya V. Scrypynets,
  • Inna I. Leonenko,
  • Alexander Ye. Baranchikov and
  • Vladimir K. Ivanov

Beilstein J. Nanotechnol. 2016, 7, 1905–1917, doi:10.3762/bjnano.7.182

Graphical Abstract
  • File 1, Figure S4). Among the numerous families of O-dots, the most popular nanostructures are prepared by a “bottom up” route, via the thermolysis of various organic compounds. For example, when heated citric acid and its salts are transformed easily into O-dots [20][21][22][23][24][25] (see
PDF
Album
Supp Info
Full Research Paper
Published 02 Dec 2016

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • beam lithography, stereolithography, direct laser writing, and block co-polymer micellar nanolithography are applied. Based on the fabrication approach, fabrication techniques can be divided whether they follow a top-down approach or a bottom-up approach. In the first approach, an already existing bulk
PDF
Album
Review
Published 08 Nov 2016

Filled and empty states of Zn-TPP films deposited on Fe(001)-p(1×1)O

  • Gianlorenzo Bussetti,
  • Alberto Calloni,
  • Rossella Yivlialin,
  • Andrea Picone,
  • Federico Bottegoni and
  • Marco Finazzi

Beilstein J. Nanotechnol. 2016, 7, 1527–1531, doi:10.3762/bjnano.7.146

Graphical Abstract
  • and the interface dipole was determined and compared with data available in the literature. Keywords: inverse photoemission; metal-oxide film; OMBE; porphyrin; Introduction Thin organic films can be realized by depositing single molecules on surfaces, which is the first step for the so-called bottom
  • -up assembly of devices based on organic compounds. The molecule–surface interaction, however, can alter the electronic properties of the organic compound and/or the functionality of the electronic device. This effect is enhanced in molecules showing catalytic activity when the catalytic sites
PDF
Album
Supp Info
Full Research Paper
Published 27 Oct 2016

NO gas sensing at room temperature using single titanium oxide nanodot sensors created by atomic force microscopy nanolithography

  • Li-Yang Hong and
  • Heh-Nan Lin

Beilstein J. Nanotechnol. 2016, 7, 1044–1051, doi:10.3762/bjnano.7.97

Graphical Abstract
  • -assisted approaches including photo-activation [12][13][14][15][16][17][18][19][20][21] and photo-recovery [22][23] have been shown effective to enable gas sensing at room temperature. The sensing material in a semiconducting metal oxide sensor is commonly synthesized by a bottom-up approach, such as
PDF
Album
Supp Info
Full Research Paper
Published 20 Jul 2016

Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

  • Zhicheng Liu,
  • Lu Bai,
  • Guizhe Zhao and
  • Yaqing Liu

Beilstein J. Nanotechnol. 2016, 7, 1028–1032, doi:10.3762/bjnano.7.95

Graphical Abstract
  • -down and bottom-up techniques, layer-by-layer (LbL) assembly is a facile and cost-efficient way for the controllable deposition of numerous components [6][7][8]. Multilayer nanostructures with complex morphologies and functions could be prepared conveniently through the LbL assembly process, which is
PDF
Album
Supp Info
Letter
Published 15 Jul 2016

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • also environmentally friendly processes. Very popular preparation methods of silver and gold nanostructures are based on bottom-up processes, where nanoparticles, are built from smaller structures such as metal ions. Sodium citrate and sodium borohydride are very common reducing chemicals for metal
PDF
Album
Full Research Paper
Published 09 Jun 2016

Facile synthesis of water-soluble carbon nano-onions under alkaline conditions

  • Gaber Hashem Gaber Ahmed,
  • Rosana Badía Laíño,
  • Josefa Angela García Calzón and
  • Marta Elena Díaz García

Beilstein J. Nanotechnol. 2016, 7, 758–766, doi:10.3762/bjnano.7.67

Graphical Abstract
  • straightforwardly synthetized via two approaches: a) from fine carbon structures (such as multi-wall nanotubes and graphene) by top-down methods and b) by bottom-up approaches from chemical precursors (such as glucose, citrate, ethylenediaminetetraacetic acid) or from natural products (usually vegetables). Recently
  • , using the bottom-up approach, we prepared C-dots based on the thermal carbonization of a mixture of nitrogen-containing organic compounds, ethyleneglycol bis(2-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA) and Tris, thus providing them not only with surface hydroxy but also with amino groups
PDF
Album
Supp Info
Full Research Paper
Published 27 May 2016

Magnetic switching of nanoscale antidot lattices

  • Ulf Wiedwald,
  • Joachim Gräfe,
  • Kristof M. Lebecki,
  • Maxim Skripnik,
  • Felix Haering,
  • Gisela Schütz,
  • Paul Ziemann,
  • Eberhard Goering and
  • Ulrich Nowak

Beilstein J. Nanotechnol. 2016, 7, 733–750, doi:10.3762/bjnano.7.65

Graphical Abstract
  • -up techniques based on the self-assembly of nanoscale spheres [2][11][12] allow precise control over diameter and distance of the antidots. In the present work, we make use of bottom-up nanosphere lithography in combination with reactive ion etching resulting in hexagonally arranged, non-close packed
  • comprehensive contribution. We start the discussion with a technical section on the achievements and limitations of magnetic antidot arrays by bottom-up nanosphere lithography and specially developed characterisation and simulation tools. We show that the development of a proper spatially resolving magnetometry
  • using nanosphere lithography and discuss important aspects of the magnetic characterisation and simulation that are not common knowledge, i.e., FORC using a MOKE microscope and the micromagnetic simulations applied to an antidot lattice. Preparation of antidot lattices Using a bottom-up approach, the
PDF
Album
Full Research Paper
Published 24 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • , TMV-like particles (TLPs) of altered length, or non-linear more complex structures up to branched architectures may be generated [54][55][56][57][58][59]. Furthermore, it is possible to immobilize one end of the RNA template prior to its encapsidation by CP, resulting in TLP growth bottom-up at sites
  • the fabrication of microfluidic devices by master-replication techniques, was already shown to allow a site-specific bottom-up integration of TMV carrier sticks [60]. This was achieved via isothiocyanate- (ITC-) based coupling of single-stranded (ss) DNA anchors, subsequent trapping of the 3'-ends of
  • nm deep holes. Arrays of TMV nanorods established by bottom-up or top-down approaches: Site-selectively arranged carriers for uses in biosensor devices. A: Spatially selective bottom-up growth of terminally immobilized TMV-like particles on aldehyde-modified areas of wafers, fashioned with assembly
PDF
Album
Review
Published 25 Apr 2016

Rigid multipodal platforms for metal surfaces

  • Michal Valášek,
  • Marcin Lindner and
  • Marcel Mayor

Beilstein J. Nanotechnol. 2016, 7, 374–405, doi:10.3762/bjnano.7.34

Graphical Abstract
PDF
Album
Review
Published 08 Mar 2016

Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures

  • Tuan Anh Pham,
  • Andreas Schreiber,
  • Elena V. Sturm (née Rosseeva),
  • Stefan Schiller and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2016, 7, 351–363, doi:10.3762/bjnano.7.32

Graphical Abstract
  • ; nanoparticles; self-assembly; SERS; Introduction Self-assembly plays a pivotal role in bottom-up strategies for the synthesis of advanced nanostructures [1]. The resulting assemblies can be one-, two- or three-dimensional. One-dimensional nanostructures show particularly great promise due to their large
PDF
Album
Supp Info
Full Research Paper
Published 04 Mar 2016

3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

  • Eduardo Guzmán,
  • Armando Maestro,
  • Sara Llamas,
  • Jesús Álvarez-Rodríguez,
  • Francisco Ortega,
  • Ángel Maroto-Valiente and
  • Ramón G. Rubio

Beilstein J. Nanotechnol. 2016, 7, 197–208, doi:10.3762/bjnano.7.18

Graphical Abstract
  • application in several fields, including optics, electronics, coatings and biomaterials (drug delivery and tissue engineering). In order to create the aforementioned materials, the development of new bottom-up techniques, which allow one to control the properties and structure of the materials at the sub
PDF
Album
Full Research Paper
Published 05 Feb 2016
Other Beilstein-Institut Open Science Activities