Search results

Search for "charge transfer" in Full Text gives 342 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Detecting stable adsorbates of (1S)-camphor on Cu(111) with Bayesian optimization

  • Jari Järvi,
  • Patrick Rinke and
  • Milica Todorović

Beilstein J. Nanotechnol. 2020, 11, 1577–1589, doi:10.3762/bjnano.11.140

Graphical Abstract
  • fast to compute, but they cannot accurately model hybrid materials, in which atomic interactions often feature a mixture of covalent and dispersive bonding, with charge transfer and polarization effects. Instead, we must employ quantum mechanical methods, such as density-functional theory (DFT) [12][13
PDF
Album
Supp Info
Full Research Paper
Published 19 Oct 2020

Fabrication of nano/microstructures for SERS substrates using an electrochemical method

  • Jingran Zhang,
  • Tianqi Jia,
  • Xiaoping Li,
  • Junjie Yang,
  • Zhengkai Li,
  • Guangfeng Shi,
  • Xinming Zhang and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2020, 11, 1568–1576, doi:10.3762/bjnano.11.139

Graphical Abstract
  • Raman signal by several orders of magnitude. The functionality of SERS is due to a combination of surface electron movement in the substrate and charge transfer between substrate and the analyte molecules, in contrast to the typical signal intensity elicited during spontaneous Raman spectroscopy, which
PDF
Album
Full Research Paper
Published 16 Oct 2020

Adsorption and self-assembly of porphyrins on ultrathin CoO films on Ir(100)

  • Feifei Xiang,
  • Tobias Schmitt,
  • Marco Raschmann and
  • M. Alexander Schneider

Beilstein J. Nanotechnol. 2020, 11, 1516–1524, doi:10.3762/bjnano.11.134

Graphical Abstract
  • in the calculations, the true PDOS will deviate and conclusions have to be drawn with care. However, the work function of CoO is, with 5.85 eV (1BL) and 6.01 eV (2BL) [47], significantly higher than that of most metals. Following the arguments of Yang et al. [48], a charge transfer into unoccupied
PDF
Album
Full Research Paper
Published 05 Oct 2020

Controlling the electronic and physical coupling on dielectric thin films

  • Philipp Hurdax,
  • Michael Hollerer,
  • Larissa Egger,
  • Georg Koller,
  • Xiaosheng Yang,
  • Anja Haags,
  • Serguei Soubatch,
  • Frank Stefan Tautz,
  • Mathias Richter,
  • Alexander Gottwald,
  • Peter Puschnig,
  • Martin Sterrer and
  • Michael G. Ramsey

Beilstein J. Nanotechnol. 2020, 11, 1492–1503, doi:10.3762/bjnano.11.132

Graphical Abstract
  • (6P) on ultrathin MgO(100) films supported on Ag(100) is reported. By deliberately changing the work function of the MgO(100)/Ag(100) system, it is shown that the charge transfer (electronic coupling) into the 6P molecules can be controlled, and 6P monolayers with uncharged molecules (Schottky–Mott
  • regime) and charged and uncharged molecules (Fermi level pinning regime) can be obtained. Furthermore, it was found that charge transfer and temperature strongly influence the orientation, conformation, and wetting behavior (physical coupling) of the 6P layers on the MgO(100) thin films. Keywords
  • : decoupling; integer charge transfer; organic films; para-sexiphenyl; thin dielectric film; Introduction Since the first scanning tunneling microscope (STM) imaging of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) of pentacene (5A) on NaCl/Cu(111) was
PDF
Album
Full Research Paper
Published 01 Oct 2020

Self-assembly and spectroscopic fingerprints of photoactive pyrenyl tectons on hBN/Cu(111)

  • Domenik M. Zimmermann,
  • Knud Seufert,
  • Luka Ðorđević,
  • Tobias Hoh,
  • Sushobhan Joshi,
  • Tomas Marangoni,
  • Davide Bonifazi and
  • Willi Auwärter

Beilstein J. Nanotechnol. 2020, 11, 1470–1483, doi:10.3762/bjnano.11.130

Graphical Abstract
  • ][33], decouple perylenetetracarboxylic dianhydride (PTCDA) aggregates [34], study interfacial charge transfer in binary phthalocyanine arrays [35], probe vibronic conductance in oligophenylenes [36], and control the charge state of F16CoPc [37]. Studies focusing on the preparation of coordination
  • molecular adsorption (Figure S11, Supporting Information File 1), open-porous structures would feature a smaller work function shift compared to densely packed molecular films. In the absence of charge transfer, the work function was assumed to decrease upon the adsorption of pyrenes on hBN/Cu(111) [84
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2020

Triboelectric nanogenerator based on Teflon/vitamin B1 powder for self-powered humidity sensing

  • Liangyi Zhang,
  • Huan Li,
  • Yiyuan Xie,
  • Jing Guo and
  • Zhiyuan Zhu

Beilstein J. Nanotechnol. 2020, 11, 1394–1401, doi:10.3762/bjnano.11.123

Graphical Abstract
  • the Teflon membrane is separated in the absence of an external force. There is a positive charge transfer from the conductive copper foil tape at the bottom of the TVB-TENG, to the conductive copper foil tape at the top, leading to an electric field equilibrium due to electrostatic induction. As a
  • result, a potential difference between the electrodes is generated. Subsequently, when the TVB-TENG is pressed again, an opposite potential difference is produced due to the triboelectrification principle. As such, there is a positive charge transfer from the top of the conductive copper foil tape of the
PDF
Album
Full Research Paper
Published 11 Sep 2020

Impact of fluorination on interface energetics and growth of pentacene on Ag(111)

  • Qi Wang,
  • Meng-Ting Chen,
  • Antoni Franco-Cañellas,
  • Bin Shen,
  • Thomas Geiger,
  • Holger F. Bettinger,
  • Frank Schreiber,
  • Ingo Salzmann,
  • Alexander Gerlach and
  • Steffen Duhm

Beilstein J. Nanotechnol. 2020, 11, 1361–1370, doi:10.3762/bjnano.11.120

Graphical Abstract
  • charge transfer from the substrate [9][28]. This can be explained by the repulsive interaction of the fluorine atoms with the substrate, which leads to much larger vertical adsorption heights of PFP compared to PEN in monolayers on Cu(111) [9]. Ag(111) represents an intermediate case [55] with weak
  • fluorinated PEN, namely 2,3,9,10-tetrafluoropentacene (F4PEN) [46][60][61]. F4PEN physisorbs on Au(111) [62] and chemisorbs on Cu(111), involving interfacial charge transfer and strong molecular distortions [63]. Here, we investigated the coupling with Ag(111) as we expected this to be an interesting
  • contrast to the monolayers of PEN and PFP on graphite, with a likewise lying-down orientation and large differences in the HOMO positions [11][25][26]. In general, for a strong interfacial coupling and charge transfer, the resonance structure of the adsorbate in the monolayer can be notably different from
PDF
Album
Supp Info
Full Research Paper
Published 08 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • in MoS2 [11], as well as enhanced out-of-plane charge transfer in 2D graphene/WSe2 heterostructures [12]. Energetic light ions are known to preferentially sputter chalcogen atoms from TMDs while retaining an adequate micrometer-scale structural integrity for irradiation doses up to approx. 1016 ions
PDF
Album
Full Research Paper
Published 04 Sep 2020

Structural and electronic properties of SnO2 doped with non-metal elements

  • Jianyuan Yu,
  • Yingeng Wang,
  • Yan Huang,
  • Xiuwen Wang,
  • Jing Guo,
  • Jingkai Yang and
  • Hongli Zhao

Beilstein J. Nanotechnol. 2020, 11, 1321–1328, doi:10.3762/bjnano.11.116

Graphical Abstract
  • crystals effectively. In order to obtain information about charge transfer after doping, the secondary differential charge distribution of the elements was calculated and the results are shown in Figure 3. Compared with O, the ability of the doping atoms to accumulate charge is reduced. This provides more
PDF
Album
Full Research Paper
Published 03 Sep 2020

Structure and electrochemical performance of electrospun-ordered porous carbon/graphene composite nanofibers

  • Yi Wang,
  • Yanhua Song,
  • Chengwei Ye and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 1280–1290, doi:10.3762/bjnano.11.112

Graphical Abstract
  • resistances of DCGCNF, OCGCNF and OPCGCNF electrodes were 3.2, 0.8 and 0.7 ohm, respectively, as shown in Figure 7. The diameter of the semicircle in the high-frequency region is a direct representation of the charge transfer resistance (Rct). Therefore, the smaller the semicircle diameter, the smaller the
  • charge transfer resistance. The charge transfer resistance is related to both the conductivity of the electrode and the morphology of the active material (i.e., surface area and pore size, respectively) [50][51]. The Rct values for DCGCNF, OCGCNF and OPCGCNF electrodes were 1.6, 1.2, and 1.0 ohm
  • , respectively. The charge transfer resistance of the OPCGCNF electrode was significantly smaller than of the other CGCNF electrodes, as illustrated in Figure 7. The low-frequency curve is related to the diffusion resistance of the electrolyte and ions into the electrode [52][53]. The almost vertical shape
PDF
Album
Full Research Paper
Published 27 Aug 2020

Hybridization vs decoupling: influence of an h-BN interlayer on the physical properties of a lander-type molecule on Ni(111)

  • Maximilian Schaal,
  • Takumi Aihara,
  • Marco Gruenewald,
  • Felix Otto,
  • Jari Domke,
  • Roman Forker,
  • Hiroyuki Yoshida and
  • Torsten Fritz

Beilstein J. Nanotechnol. 2020, 11, 1168–1177, doi:10.3762/bjnano.11.101

Graphical Abstract
  • charge transfer [1][2]. Some applications, however, require to preserve the intrinsic properties of the molecules such as the typically rather narrow optical absorption and/or emission bands. To achieve this, one needs to electronically decouple the molecules from the substrate, which can be achieved
PDF
Album
Supp Info
Full Research Paper
Published 04 Aug 2020

Photothermally active nanoparticles as a promising tool for eliminating bacteria and biofilms

  • Mykola Borzenkov,
  • Piersandro Pallavicini,
  • Angelo Taglietti,
  • Laura D’Alfonso,
  • Maddalena Collini and
  • Giuseppe Chirico

Beilstein J. Nanotechnol. 2020, 11, 1134–1146, doi:10.3762/bjnano.11.98

Graphical Abstract
  • blue nanoparticles for bacteria and biofilm photothermal ablation has recently become a new research topic. Those nanoparticles strongly absorb in the range of 700–750 nm due to the metal-to-metal charge transfer between FeII and FeIII through the cyanide bridge [37]. The photothermally induced death
  • NIR-photothermal ablation (>99.99%) of S. aureus both in biofilms and in infected tissues [98]. Molybdenum oxide nanoparticles display a strong absorption in the NIR region, originating from the intervalence charge-transfer transition between the Mo5+ and Mo6+ states [99]. Ag nanocubes supported on
PDF
Album
Review
Published 31 Jul 2020

Monolayers of MoS2 on Ag(111) as decoupling layers for organic molecules: resolution of electronic and vibronic states of TCNQ

  • Asieh Yousofnejad,
  • Gaël Reecht,
  • Nils Krane,
  • Christian Lotze and
  • Katharina J. Franke

Beilstein J. Nanotechnol. 2020, 11, 1062–1071, doi:10.3762/bjnano.11.91

Graphical Abstract
  • hybridization, charge transfer and screening [1][2][3][4]. These effects lead to a broadening and shift of the molecular resonances [5]. Often the molecular functionality is also lost due to these interactions [6]. However, addressing individual molecules in devices or by single-molecule spectroscopy as offered
  • -derived resonance lies close to, but above, the Fermi level of the substrate, whereas the HOMO is far below. This leaves the molecule in a neutral state with a negligible amount of charge transfer, despite the electron accepting character of TCNQ. Nonetheless, its electron affinity of approx. 3.4 eV [53
PDF
Album
Full Research Paper
Published 20 Jul 2020

Adsorption behavior of tin phthalocyanine onto the (110) face of rutile TiO2

  • Lukasz Bodek,
  • Mads Engelund,
  • Aleksandra Cebrat and
  • Bartosz Such

Beilstein J. Nanotechnol. 2020, 11, 821–828, doi:10.3762/bjnano.11.67

Graphical Abstract
  • show tremendous potential for a multitude of applications [1][2][3][4][5]. In many applications, the interface between a Pc molecule and the surface onto which it is adsorbed is of paramount importance. It is the adsorption configuration that affects phenomena such as charge transfer and layer
  • the molecules. The change of the molecular positions is not accompanied by the creation of new chemical bonds, as XPS spectra reveal. This suggests that positioning the Sn atom in close proximity to the surface does not induce a significant charge transfer between the substrate and the molecule. Due
PDF
Album
Supp Info
Full Research Paper
Published 26 May 2020

Templating effect of single-layer graphene supported by an insulating substrate on the molecular orientation of lead phthalocyanine

  • K. Priya Madhuri,
  • Abhay A. Sagade,
  • Pralay K. Santra and
  • Neena S. John

Beilstein J. Nanotechnol. 2020, 11, 814–820, doi:10.3762/bjnano.11.66

Graphical Abstract
  • microscopy shows enhanced vertical conductance with interconnected conducting domains consisting of ordered monoclinic crystallites through which the charge transfer occurs via tunneling. These results show the importance of a templating layer to induce the formation of a required phase of PbPc suitable for
PDF
Album
Full Research Paper
Published 19 May 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • exposure of active sites and to improve the ion and charge transfer through nanochannels together with the electron-conductive medium [46]. Here, the increase of conductivity and surface area from CTF-1-400 to CTF-1-600 go in the same direction and cannot be differentiated regarding their role in improving
  • admixture of Ni species with low activity in the composite materials. The better OER performance of CTF-1-600 over the CTF-1-400 materials is attributed to the better conductivity of the former (as given by the Nyquist plot in Figure 7) and its faster ion and charge transfer together with its higher
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Exfoliation in a low boiling point solvent and electrochemical applications of MoO3

  • Matangi Sricharan,
  • Bikesh Gupta,
  • Sreejesh Moolayadukkam and
  • H. S. S. Ramakrishna Matte

Beilstein J. Nanotechnol. 2020, 11, 662–670, doi:10.3762/bjnano.11.52

Graphical Abstract
  • effect of CB (Figure 3f). The addition of carbon black leads to a reduction of charge transfer resistance in the composites with 5 and 8 wt % CB (6 Ω) compared to the composite with 2 wt % CB (19 Ω). The chargetransfer curve is similar for 5 and 8 wt % CB, which implies that the effect of the additive
PDF
Album
Supp Info
Letter
Published 17 Apr 2020

Luminescent gold nanoclusters for bioimaging applications

  • Nonappa

Beilstein J. Nanotechnol. 2020, 11, 533–546, doi:10.3762/bjnano.11.42

Graphical Abstract
  • ligands and introducing a proper steric nature, the metal-to-ligand charge transfer can be tuned [60]. As a consequence, the PL of Au25 NCs has been enhanced. The electron-donor ability of ligands and the direct donation of the delocalized electron from electron-rich atoms of the ligands to the metallic
PDF
Album
Review
Published 30 Mar 2020

Interfacial charge transfer processes in 2D and 3D semiconducting hybrid perovskites: azobenzene as photoswitchable ligand

  • Nicole Fillafer,
  • Tobias Seewald,
  • Lukas Schmidt-Mende and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2020, 11, 466–479, doi:10.3762/bjnano.11.38

Graphical Abstract
  • system of a semiconductor. Torres et al. reported calculations of a charge-transfer complex of para-methyl red/TiO2 in the gas phase where the isomerisation is fully quenched. The photoexcited state is oxidized immediately through a charge transfer from the azobenzene to TiO2 and no conformational change
  • photoswitching of azobenzene on semiconducting TiO2 is suppressed due to a sudden oxidation of the chromophore. The formation of a heterogeneous charge-transfer complex disturbs the isomerisation and no photoswitching is observed [37]. To clarify possible electronical processes, the relative energies of valence
  • molecules. Regarding the energies, a charge transfer from CB to S1 is conceivable, likewise in the other direction. The conclusions from our findings are: It is at least very questionable whether photoswitching of azobenzene species within the layers of the 2D hybrid perovskite phases takes place at all
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2020

Electrochemically derived functionalized graphene for bulk production of hydrogen peroxide

  • Munaiah Yeddala,
  • Pallavi Thakur,
  • Anugraha A and
  • Tharangattu N. Narayanan

Beilstein J. Nanotechnol. 2020, 11, 432–442, doi:10.3762/bjnano.11.34

Graphical Abstract
  • charge transfer properties of functionalized graphene (graphene oxide (GO) or other functional derivatives of graphene) [41]. Hence the single-step method for the production of large scale, controllably functionalized graphene is of high demand, and in this work, we demonstrate such a method to control
  • further tune the charge transfer properties of such functionalized graphene powders [60], opening a plethora of opportunities in this field. Conclusion An efficient single-step method (without any post-treatment) has been developed for the high-yield synthesis of carbon-based peroxide, generating ORR
PDF
Album
Supp Info
Full Research Paper
Published 09 Mar 2020

DFT calculations of the structure and stability of copper clusters on MoS2

  • Cara-Lena Nies and
  • Michael Nolan

Beilstein J. Nanotechnol. 2020, 11, 391–406, doi:10.3762/bjnano.11.30

Graphical Abstract
  • monolayer is presented by Rawal et al. [25] to study the effect of defects in MoS2 on the catalytic activity of the supported nanoparticles. They observe that the magnitude of binding energy and charge transfer follows the trend Cu > Ag > Au. On the pristine surface the binding energies of the nanoparticles
  • are 5.4 eV for Cu, 4.2 eV for Ag and 4.5 eV for Au. The presence of a complete row of sulfur vacancies enhances the adsorption energy of the nanoparticles for all three metals, increasing it to 7.1 eV, 7.0 eV and 6.0 eV for Cu, Ag and Au, respectively. It also increases the charge transfer from the
  • oxidised when they are bound at the vacancy, while oxidation to Cu+ occurs for atoms further away from the vacancy. The same observations were also found for the pristine surface, indicating that the presence of the vacancy does not directly affect the charge transfer unless the Cu atom is adsorbed in or
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2020

Implementation of data-cube pump–probe KPFM on organic solar cells

  • Benjamin Grévin,
  • Olivier Bardagot and
  • Renaud Demadrille

Beilstein J. Nanotechnol. 2020, 11, 323–337, doi:10.3762/bjnano.11.24

Graphical Abstract
  • global electrostatic landscape probed by KPFM in the dark state [20]. The photocharging dynamics can be understood as follows. After exciton splitting and dissociation of the charge transfer states at the D–A interfaces, the photogenerated carriers experience a drift-diffusion limited by the carrier
  • molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) levels. These energetic offsets enable to dissociate singlet excitons into Coulomb-bound electron–hole pairs also called charge transfer states (CTs). These can either recombine in pairs at the D–A interfaces or split up into free
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • electrodes impede the diffusion less strongly, which is attributed to the faster transport of electrons and the charge transfer resistance (Rct). Fitting the electrochemical impedance spectroscopy (EIS) plots based on the equivalent circuit model (inset of Figure 6d), reveals a solution resistance (Rs) of
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Molecular architectonics of DNA for functional nanoarchitectures

  • Debasis Ghosh,
  • Lakshmi P. Datta and
  • Thimmaiah Govindaraju

Beilstein J. Nanotechnol. 2020, 11, 124–140, doi:10.3762/bjnano.11.11

Graphical Abstract
  • of the advantages of this system was that the DNA–multichromophore organization could be aligned vertically over the gold electrode, which facilitated exothermic charge separation and suppressesed the ground-state charge transfer (CT) complexation between DPP and NDI, followed by the generation of a
PDF
Album
Review
Published 09 Jan 2020

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • chemical (CM) [5] and electromagnetic enhancement (EM) [6][7]. The CM enhancement is the main factor for charge transfer between the SERS substrate and probe molecule. The EM field enhancement is the main factor for localized surface plasmon resonance (LSPR) and significantly depends on the induced near
PDF
Album
Full Research Paper
Published 13 Dec 2019
Other Beilstein-Institut Open Science Activities