Search results

Search for "coalescence" in Full Text gives 87 result(s) in Beilstein Journal of Nanotechnology.

Oriented attachment explains cobalt ferrite nanoparticle growth in bioinspired syntheses

  • Annalena Wolff,
  • Walid Hetaba,
  • Marco Wißbrock,
  • Stefan Löffler,
  • Nadine Mill,
  • Katrin Eckstädt,
  • Axel Dreyer,
  • Inga Ennen,
  • Norbert Sewald,
  • Peter Schattschneider and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2014, 5, 210–218, doi:10.3762/bjnano.5.23

Graphical Abstract
  • in Figure 6. The number of primary building blocks within a single disc was calculated to be N = 417 for zdisc = 10 nm, sdisc = 22 nm, zpbb = 1.7 nm, spbb = 2.5 nm. These values were found in the EELS and TEM measurements. To obtain the surface reduction by coalescence, the surface area of 417
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2014

Confinement dependence of electro-catalysts for hydrogen evolution from water splitting

  • Mikaela Lindgren and
  • Itai Panas

Beilstein J. Nanotechnol. 2014, 5, 195–201, doi:10.3762/bjnano.5.21

Graphical Abstract
  • ) Coalescence of proton and electrons to form the metal catalyst (MC) associated hydride, (B) Hydride-proton recombination to form H2 at the interface. (C) The step between panel B and panel C comprises the HER following the hydride-proton recombination step. Acknowledgements The Swedish Research Council
PDF
Album
Full Research Paper
Published 24 Feb 2014

Design criteria for stable Pt/C fuel cell catalysts

  • Josef C. Meier,
  • Carolina Galeano,
  • Ioannis Katsounaros,
  • Jonathon Witte,
  • Hans J. Bongard,
  • Angel A. Topalov,
  • Claudio Baldizzone,
  • Stefano Mezzavilla,
  • Ferdi Schüth and
  • Karl J. J. Mayrhofer

Beilstein J. Nanotechnol. 2014, 5, 44–67, doi:10.3762/bjnano.5.5

Graphical Abstract
  • , and 2D Ostwald ripening – as known from high temperature TEM studies in the absence of an electrolyte – if platinum atoms are believed to diffuse along the carbon support) [44][45][47][48]. Another possible explanation for the growth of platinum particles in the catalyst layer is coalescence [17][49
  • ]. This may be either due to migration and collision of platinum particles on the surface of the carbon support with successive coalescence, or due to strong carbon corrosion. In the second case, neighboring but initially separated particles come into contact with each other because of a successive
  • shrinkage of the carbon support on which they are located [49]. However, also in the first possible case of agglomeration and coalescence due to migration, carbon corrosion may be involved and lead to a weakening of the interactions between platinum particles and support. Alternatively a preferential local
PDF
Album
Supp Info
Review
Published 16 Jan 2014

STM tip-assisted engineering of molecular nanostructures: PTCDA islands on Ge(001):H surfaces

  • Amir A. Ahmad Zebari,
  • Marek Kolmer and
  • Jakub S. Prauzner-Bechcicki

Beilstein J. Nanotechnol. 2013, 4, 927–932, doi:10.3762/bjnano.4.104

Graphical Abstract
  • subsequent scan (Figure 1d) one can observe a gradual growth of these features, eventually leading to their coalescence into one object (Figure 1e) that continues to gradually grow (Figure 1f). Typically, the morphology of PTCDA islands are stable during a STM/STS characterization. We assume that the
PDF
Album
Full Research Paper
Published 18 Dec 2013

Synthesis and electrochemical performance of Li2Co1−xMxPO4F (M = Fe, Mn) cathode materials

  • Nellie R. Khasanova,
  • Oleg A. Drozhzhin,
  • Stanislav S. Fedotov,
  • Darya A. Storozhilova,
  • Rodion V. Panin and
  • Evgeny V. Antipov

Beilstein J. Nanotechnol. 2013, 4, 860–867, doi:10.3762/bjnano.4.97

Graphical Abstract
  • size and to prevent grain coalescence the lowest temperatures usable for the formation of the pure olivine precursors and the fluorophosphates were always chosen. The Li2CoPO4F/C composite for electrochemical measurements was synthesized according to a procedure that was optimized previously [4]. A
  • that the presence of LiF, which is used as the reagent, promoted the coalescence of small particles and induced crystallite growth because of fluxing at elevated temperatures. In spite of varying the preparation conditions all attempts to increase the substitution level of Fe in Li2Co1−xFexPO4F (x
PDF
Album
Full Research Paper
Published 09 Dec 2013

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • range of the helium ions. Consequently, bubble coalescence leads to the formation of a large blister that continues to grow. The final size before the shell leaks depends on the primary energy and thus the implantation depth. During irradiation with He+ ions at normal beam incidence also a periodic
PDF
Album
Full Research Paper
Published 24 Jul 2013

Functionalization of vertically aligned carbon nanotubes

  • Eloise Van Hooijdonk,
  • Carla Bittencourt,
  • Rony Snyders and
  • Jean-François Colomer

Beilstein J. Nanotechnol. 2013, 4, 129–152, doi:10.3762/bjnano.4.14

Graphical Abstract
PDF
Album
Review
Published 22 Feb 2013

Electron-beam patterned self-assembled monolayers as templates for Cu electrodeposition and lift-off

  • Zhe She,
  • Andrea DiFalco,
  • Georg Hähner and
  • Manfred Buck

Beilstein J. Nanotechnol. 2012, 3, 101–113, doi:10.3762/bjnano.3.11

Graphical Abstract
  • crucial for the topography. This is not unexpected, as the roughness must be dependent on the morphology of the mushrooms, in particular at the point of coalescence. In this context we note that deposition on Au/Si under slightly different conditions such as −0.7 V for 1 s and −0.25 V for 20 s for
PDF
Album
Full Research Paper
Published 06 Feb 2012

Dynamics of capillary infiltration of liquids into a highly aligned multi-walled carbon nanotube film

  • Sławomir Boncel,
  • Krzysztof Z. Walczak and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2011, 2, 311–317, doi:10.3762/bjnano.2.36

Graphical Abstract
  • for these liquids, according to the theoretical background, must be lower than 90°. The H2/R ratio, appearing in the coefficient of proportionality in Equation 4, must be treated carefully as coalescence of nanotubes was observed. The coalescence manifested by a slight depression of the nanotube film
  • intertube separation distance calculated from the nanotube density in the HACNT film is ~310 nm, whereas an average pore size (R) derived from the H2/R ratio (20 m) is ~50 nm. This is also a reflection of the coalescence behaviour. Addition of a conventional anionic surfactant, sodium dodecylbenzene sulfate
PDF
Album
Letter
Published 20 Jun 2011

Ultrafine metallic Fe nanoparticles: synthesis, structure and magnetism

  • Olivier Margeat,
  • Marc Respaud,
  • Catherine Amiens,
  • Pierre Lecante and
  • Bruno Chaudret

Beilstein J. Nanotechnol. 2010, 1, 108–118, doi:10.3762/bjnano.1.13

Graphical Abstract
  • process involving the coalescence of small clusters. This emphasises the importance of the solution phase synthesis for the trapping of unstable intermediates and the growth of metastable structures often kinetically favoured. Magnetic properties A. Mössbauer spectra The Mössbauer spectra, recorded at
PDF
Album
Full Research Paper
Published 03 Dec 2010

Flash laser annealing for controlling size and shape of magnetic alloy nanoparticles

  • Damien Alloyeau,
  • Christian Ricolleau,
  • Cyril Langlois,
  • Yann Le Bouar and
  • Annick Loiseau

Beilstein J. Nanotechnol. 2010, 1, 55–59, doi:10.3762/bjnano.1.7

Graphical Abstract
  • -resolution pole piece and a PGT energy dispersive X-Ray (EDX) analyser. The morphology of as-grown CoPt NPs is shown in Figure 2a. NPs have irregular shapes elongated in the substrate plane due to coalescence processes during the synthesis. The morphological changes induced by the laser irradiation as a
  • to prevent NPs coalescence. Using classical annealing procedures L10 ordered NPs can then be obtained without changing their shape. In conclusion, flash laser annealing is a method of choice to fabricate 10 to 15 nm size magnetic alloy NPs with spherical shape and low polydispersity (~20%). Indeed
PDF
Album
Full Research Paper
Published 22 Nov 2010

Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles

  • Ulf Wiedwald,
  • Luyang Han,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2010, 1, 24–47, doi:10.3762/bjnano.1.5

Graphical Abstract
  • colloidal particles are dispersed at low concentration in a salt matrix which allows high-temperature annealing without NP coalescence. After removal of the salt matrix and recovery of NPs applying surfactants as spacers, the particles show size-dependent degrees of chemical order, coercive fields
PDF
Album
Video
Full Research Paper
Published 22 Nov 2010
Other Beilstein-Institut Open Science Activities