Search results

Search for "drug delivery systems" in Full Text gives 115 result(s) in Beilstein Journal of Nanotechnology.

Enhanced antineoplastic/therapeutic efficacy using 5-fluorouracil-loaded calcium phosphate nanoparticles

  • Shanid Mohiyuddin,
  • Saba Naqvi and
  • Gopinath Packirisamy

Beilstein J. Nanotechnol. 2018, 9, 2499–2515, doi:10.3762/bjnano.9.233

Graphical Abstract
  • /bjnano.9.233 Abstract In the past few decades, the successful theranostic application of nanomaterials in drug delivery systems has significantly improved the antineoplastic potency of conventional anticancer therapy. Several mechanistic advantages of nanomaterials, such as enhanced permeability
PDF
Album
Supp Info
Full Research Paper
Published 20 Sep 2018

Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design

  • Paulina Korycka,
  • Adam Mirek,
  • Katarzyna Kramek-Romanowska,
  • Marcin Grzeczkowicz and
  • Dorota Lewińska

Beilstein J. Nanotechnol. 2018, 9, 2466–2478, doi:10.3762/bjnano.9.231

Graphical Abstract
  • among others as: coatings with hydrophobic properties [19], membranes for fog harvesting [20], drug delivery systems with encapsulated therapeutic substances [21]. Therefore, it is fully justified to dedicate a study to the analysis of conditions in which the beads can be optimally obtained. Although a
PDF
Album
Full Research Paper
Published 17 Sep 2018

Nanoconjugates of a calixresorcinarene derivative with methoxy poly(ethylene glycol) fragments for drug encapsulation

  • Alina M. Ermakova,
  • Julia E. Morozova,
  • Yana V. Shalaeva,
  • Victor V. Syakaev,
  • Aidar T. Gubaidullin,
  • Alexandra D. Voloshina,
  • Vladimir V. Zobov,
  • Irek R. Nizameev,
  • Olga B. Bazanova,
  • Igor S. Antipin and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 2057–2070, doi:10.3762/bjnano.9.195

Graphical Abstract
  • use as a supramolecular drug-delivery system. Keywords: calixresorcinarene; drug encapsulation; hemotoxicity; methoxy poly(ethylene glycol); temperature-controlled release; Introduction One of the acute problems of modern medicinal therapy is the development of novel drug-delivery systems with low
PDF
Album
Supp Info
Full Research Paper
Published 27 Jul 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • nanoscale, which is the size of the majority of biological molecules [1]. In nanomedicine, new drug-delivery systems can be designed to obtain, combined with state-of-the-art implantation technology, implants with therapeutic agents that are released at the site of implantation. The aforementioned systems
PDF
Album
Full Research Paper
Published 13 Jul 2018

A visible-light-controlled platform for prolonged drug release based on Ag-doped TiO2 nanotubes with a hydrophobic layer

  • Caihong Liang,
  • Jiang Wen and
  • Xiaoming Liao

Beilstein J. Nanotechnol. 2018, 9, 1793–1801, doi:10.3762/bjnano.9.170

Graphical Abstract
  • their well-defined geometry, stable structure [1], high surface-to-volume ratio, highly hydrophilic wetting characteristic [2][3], and remarkable photocatalysis properties [4]. However, the traditional drug delivery systems still exhibit many obvious drawbacks such as low drug solubility, uncontrolled
PDF
Album
Full Research Paper
Published 14 Jun 2018

Preparation and morphology-dependent wettability of porous alumina membranes

  • Dmitry L. Shimanovich,
  • Alla I. Vorobjova,
  • Daria I. Tishkevich,
  • Alex V. Trukhanov,
  • Maxim V. Zdorovets and
  • Artem L. Kozlovskiy

Beilstein J. Nanotechnol. 2018, 9, 1423–1436, doi:10.3762/bjnano.9.135

Graphical Abstract
  • biotechnological and medical development. Some applications include the separation of organic macromolecules and proteins (bio-filtration), their use in biosensor devices and capsule drug delivery systems, use for coating implants, and as a matrix for the formation of biocompatible tissues [19][20][21][22
PDF
Album
Supp Info
Full Research Paper
Published 15 May 2018

Atomic-level characterization and cilostazol affinity of poly(lactic acid) nanoparticles conjugated with differentially charged hydrophilic molecules

  • María Francisca Matus,
  • Martín Ludueña,
  • Cristian Vilos,
  • Iván Palomo and
  • Marcelo M. Mariscal

Beilstein J. Nanotechnol. 2018, 9, 1328–1338, doi:10.3762/bjnano.9.126

Graphical Abstract
  • suggest that the combination of molecular dynamics ReaxFF simulations and blind docking techniques can be used as an explorative tool prior to experiments, which is useful for rational design of new drug delivery systems. Keywords: drug delivery; PEGylated nanoparticle; PLA; polymeric nanoparticle
  • ; reactive force field; Introduction In recent years, the use of drug delivery systems based on polymeric nanoparticles (NPs) has generated innovative therapeutic strategies for infection and immune diseases, as well as cancer therapy [1][2][3]. Polymeric NPs have shown significant advantages compared with
  • explorative tool or as a complementary approach to experiments, which is useful for the rational design of new drug delivery systems. In future work, this approximation will be correlated with maximum drug loading determined experimentally and the protective role of differentially charged PEG for drug release
PDF
Album
Full Research Paper
Published 02 May 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • utilized toward the development of cutting-edge hybrid nanostructures. For example, BN/noble metal (Pt, Au, Ag) hybrid nanomaterials are envisaged to be the promising components of highly active catalysts, drug delivery systems, molecular probe sensors, surface enhanced Raman spectroscopy techniques, and
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Liquid-crystalline nanoarchitectures for tissue engineering

  • Baeckkyoung Sung and
  • Min-Ho Kim

Beilstein J. Nanotechnol. 2018, 9, 205–215, doi:10.3762/bjnano.9.22

Graphical Abstract
  • striving for decades to invent biocompatible LC nanostructures for biomedical applications [6][7]. These works cover medical imaging and spectroscopy instruments [8][9], diagnostic biosensors [10], microlens devices [11], soft actuators [12][13], and drug delivery systems [14][15]. On the other hand, LCs
  • [36] and drug delivery systems [37]. For tissue regeneration, the mostly studied biomaterials are collagen and chitin, which are, respectively, protein-based and glucose-based biopolymers [38][39]. When denatured, collagen and chitin can be transformed into gelatin and chitosan, respectively, which
  • morphology control, which can be further extended to directed cell differentiation. Moreover, the tissue-mimectic characteristics of LC biomaterials can be exploited for fabricating artificial organs-on-a-chip and bioinspired drug delivery systems. The tunable optical response of biological LC materials is
PDF
Album
Review
Published 18 Jan 2018

Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery

  • Gamze Varan,
  • Juan M. Benito,
  • Carmen Ortiz Mellet and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1457–1468, doi:10.3762/bjnano.8.145

Graphical Abstract
  • during chemotherapy. Amphiphilic cyclodextrins are favored oligosaccharides as drug delivery systems for anticancer drugs, having the ability to spontaneously form nanoparticles without surfactant or co-solvents. In the past few years, polycationic, amphiphilic cyclodextrins were introduced as effective
  • derivatives provide suitable nanometer-sized drug delivery systems for safe and efficient intravenous paclitaxel delivery for chemotherapy. In the light of these studies, it can be said that amphiphilic cyclodextrin nanoparticles of different surface charge can be considered as a promising alternative for
  • several factors that influence the particle size, particle distribution, surface charge, homogeneity and shape of nanometer-sized drug delivery systems. These factors have a subsequent influence on the biodistribution and the fate of the nanomedicine in the body [27]. In this case, the formulation
PDF
Album
Full Research Paper
Published 13 Jul 2017

Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment

  • Cem Varan and
  • Erem Bilensoy

Beilstein J. Nanotechnol. 2017, 8, 1446–1456, doi:10.3762/bjnano.8.144

Graphical Abstract
  • Background: Brain tumors are the most common tumors among adolescents. Although some chemotherapeutics are known to be effective against brain tumors based on cell culture studies, the same effect is not observed in clinical trials. For this reason, the development of drug delivery systems is important to
  • [4][5][6][7][8][9]. It is possible to bypass the BBB and reach the tumor site directly with implantable drug delivery systems such as Gliadel®, which is the chemotherapeutic drug carmustine-loaded wafer implant. These drug delivery systems can be implanted after surgical removal of the tumor
  • agents to the tumor site, while avoiding possible side effects. The development of novel drug delivery systems with reduced side effects is an important breakthrough and nanoparticles are promising in this field as they enable localized drug delivery to target sites and enhanced cellular uptake
PDF
Album
Full Research Paper
Published 12 Jul 2017

Carbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation

  • Kati Erdmann,
  • Jessica Ringel,
  • Silke Hampel,
  • Manfred P. Wirth and
  • Susanne Fuessel

Beilstein J. Nanotechnol. 2017, 8, 1307–1317, doi:10.3762/bjnano.8.132

Graphical Abstract
  • complex drug delivery systems at the tumor site would minimize systemic resorption and deleterious effects to healthy tissues. Carbon nanomaterials such as CNFs and CNTs represent a much investigated option for such biomedical applications. In addition to facilitate a passive targeting, various studies
  • chemoresistant cells to conventional chemotherapeutics and thus make them more prone to the cytotoxic drug effects [17][28]. One limiting factor for the application of carbon nanomaterials as drug delivery systems are their toxicity owing to their small size and structural resemblance to asbestos [33][42]. In
  • ][44]. Consequently, a local application of nanomaterial-based drug delivery systems directly to the tumor site would limit their systemic resorption and thus adverse effects to other organs. Conclusion In this study we could demonstrate that the anti-proliferative and pro-apoptotic effects of two
PDF
Album
Supp Info
Full Research Paper
Published 23 Jun 2017

Modeling adsorption of brominated, chlorinated and mixed bromo/chloro-dibenzo-p-dioxins on C60 fullerene using Nano-QSPR

  • Piotr Urbaszek,
  • Agnieszka Gajewicz,
  • Celina Sikorska,
  • Maciej Haranczyk and
  • Tomasz Puzyn

Beilstein J. Nanotechnol. 2017, 8, 752–761, doi:10.3762/bjnano.8.78

Graphical Abstract
  • applications, including sorbents, cancer therapeutics, drug delivery systems, computer sensors, etc. [16][17][18][19]. With the further development of nanotechnology, C60 will be produced and used in large amounts. Over time, fullerene structures will be found in the environment more often and in higher
PDF
Album
Supp Info
Full Research Paper
Published 31 Mar 2017

Dispersion of single-wall carbon nanotubes with supramolecular Congo red – properties of the complexes and mechanism of the interaction

  • Anna Jagusiak,
  • Barbara Piekarska,
  • Tomasz Pańczyk,
  • Małgorzata Jemioła-Rzemińska,
  • Elżbieta Bielańska,
  • Barbara Stopa,
  • Grzegorz Zemanek,
  • Janina Rybarska,
  • Irena Roterman and
  • Leszek Konieczny

Beilstein J. Nanotechnol. 2017, 8, 636–648, doi:10.3762/bjnano.8.68

Graphical Abstract
  • ]. Functionalization also allows for the attachment of biologically active molecules – e.g., drugs, nucleic acids, antibodies or ligands for cell-surface receptors. This is especially important for targeted drug delivery systems based on CNT [13][15][18][19][20][21]. Noncovalent functionalization of CNTs is usually
  • nanotubes (SWNTs) are currently intensely studied as promising drug delivery systems for cancer therapies due to such their properties as: the ability to penetrate cell membrane [16][17], high drug capacity [8][9], selective retention in the tumour [21], reduced toxic effects of the drug [5][20]. The major
  • therapy. The aim of our studies is to explain whether CR-functionalized SWNTs could be used as drug delivery systems. Molecular dynamics study of SWNT–CR interactions has already been published [39]. These authors studied several combinations of parameters in order to assess how the SWNT diameter and CR
PDF
Album
Full Research Paper
Published 16 Mar 2017

Nanoscale isoindigo-carriers: self-assembly and tunable properties

  • Tatiana N. Pashirova,
  • Andrei V. Bogdanov,
  • Lenar I. Musin,
  • Julia K. Voronina,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Vladimir F. Mironov,
  • Lucia Ya. Zakharova,
  • Shamil K. Latypov and
  • Oleg G. Sinyashin

Beilstein J. Nanotechnol. 2017, 8, 313–324, doi:10.3762/bjnano.8.34

Graphical Abstract
  • micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate) was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials. Keywords: drug delivery systems; dyes; isoindigo
  • types of mixed surfactant–isoindigo derivative assemblies. The data obtained are expected to contribute to the development of nanodevices with interesting optical properties and pharmacological applications as drug delivery systems. Experimental Materials 1-Phenylazo-2-naphthol (Sudan I, Acros Organics
PDF
Album
Supp Info
Full Research Paper
Published 01 Feb 2017

Chitosan-based nanoparticles for improved anticancer efficacy and bioavailability of mifepristone

  • Huijuan Zhang,
  • Fuqiang Wu,
  • Yazhen Li,
  • Xiping Yang,
  • Jiamei Huang,
  • Tingting Lv,
  • Yingying Zhang,
  • Jianzhong Chen,
  • Haijun Chen,
  • Yu Gao,
  • Guannan Liu and
  • Lee Jia

Beilstein J. Nanotechnol. 2016, 7, 1861–1870, doi:10.3762/bjnano.7.178

Graphical Abstract
  • gelation technique (Figure 1). This technique has been widely used to prepare CNs as drug delivery systems for a variety of drugs, including either hydrophobic drugs or hydrophilic protein drugs [22][24]. Because of the strong hydrophobicity of MIF, it is hard to load MIF into blank CNs after the ionic
PDF
Album
Full Research Paper
Published 28 Nov 2016

Influence of hydrothermal synthesis parameters on the properties of hydroxyapatite nanoparticles

  • Sylwia Kuśnieruk,
  • Jacek Wojnarowicz,
  • Agnieszka Chodara,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 1586–1601, doi:10.3762/bjnano.7.153

Graphical Abstract
  • and investors. Hydroxyapatite is characterized by its biocompatibility and osteoconductivity. The material has been commonly and successfully used in regenerative medicine and in drug delivery systems [3][4]. Nanostructured hydroxyapatite particles can be applied as building blocks for damaged enamel
PDF
Album
Full Research Paper
Published 04 Nov 2016

Tight junction between endothelial cells: the interaction between nanoparticles and blood vessels

  • Yue Zhang and
  • Wan-Xi Yang

Beilstein J. Nanotechnol. 2016, 7, 675–684, doi:10.3762/bjnano.7.60

Graphical Abstract
  • easily find them in, e.g., cosmetics [1], food additives [2], industrial process [3] and, especially, in medical therapy [4] and diagnostics [5]. In light of medical therapy, NPs have shown their extraordinary potential in cancer chemotherapeutics [6] and drug delivery systems [7], which successfully
PDF
Album
Review
Published 06 May 2016

Comparison of the interactions of daunorubicin in a free form and attached to single-walled carbon nanotubes with model lipid membranes

  • Dorota Matyszewska

Beilstein J. Nanotechnol. 2016, 7, 524–532, doi:10.3762/bjnano.7.46

Graphical Abstract
  • -induced heart failure, which is mainly associated with the process of the reactive oxygen species formation as well as the formation of hydroxyl radicals by free iron cations in the Fenton reaction [4]. Therefore, numerous studies focus on the application of different drug delivery systems (DDS) to
  • transport daunorubicin to cancer cells [5]. Drug delivery systems are aimed at providing enhanced transport of therapeutic agents directly to the targeted organs and tissues, which enables the elimination or significant decrease in the side effects of a drug. One of the most common type of drug nanocarriers
  • -stranded DNA or RNA sequences showing high specificity and affinity to their targets, which were employed as molecular targeting agents for targeted drug transport. Carbon nanotubes (CNTs) are among the promising drug delivery systems. They attract scientists’ attention due to their properties such as
PDF
Album
Supp Info
Full Research Paper
Published 08 Apr 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • delivery systems [4]. The biomedical applications of AgNPs and SPIONs imply uptake into the body, which consequently leads to interactions with protein-containing biological fluids [5][6]. Therefore, it is of increasing interest to systematically collect detailed information on their physicochemical
  • great interest for application in a variety of other commercial products, such as mobile phones, textiles, food storage containers, refrigerators, and cosmetics [1][2]. SPIONs are exploited in numerous in vitro and in vivo biomedical applications, but the most important is their use in imaging and drug
PDF
Album
Full Research Paper
Published 15 Feb 2016

pH-Triggered release from surface-modified poly(lactic-co-glycolic acid) nanoparticles

  • Manuel Häuser,
  • Klaus Langer and
  • Monika Schönhoff

Beilstein J. Nanotechnol. 2015, 6, 2504–2512, doi:10.3762/bjnano.6.260

Graphical Abstract
  • use of nanoparticles as drug delivery systems has been intensively investigated and important progress has been made within the past decades, establishing reliable methods for particle preparation and characterization. Formation of nanostructures based on different materials, such as metals [1
  • ], mineral compounds [2], proteins [3], and a large variety of polymers [4] is widely used in numerous scientific fields. The assembly of biocompatible nanoparticle preparation deserves special attention, if the aim is to apply these nanoparticles as drug delivery systems in vivo. A commonly used polymer
PDF
Album
Full Research Paper
Published 30 Dec 2015

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • widespread applications as drug delivery systems in the diagnosis and treatment of various diseases [1][2]. Recently, upconversion nanoparticles have shown promise as optical materials [3] and a number of reviews [4][5][6] have described their applications in drug and gene delivery [7], cell labeling and
PDF
Album
Full Research Paper
Published 03 Dec 2015

Electroviscous effect on fluid drag in a microchannel with large zeta potential

  • Dalei Jing and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2015, 6, 2207–2216, doi:10.3762/bjnano.6.226

Graphical Abstract
  • -mechanical systems (MEMS/NEMS) have been realized and widely used. As a significant branch of MEMS/NEMS, micro/nanofluidic systems incorporating micro/nano pumps, valves, mixers, and channels have wide applications, such as micro heat exchangers, drug delivery systems, and lab-on-a-chip bioanalysis [1][2
PDF
Album
Full Research Paper
Published 24 Nov 2015

Nanofibers for drug delivery – incorporation and release of model molecules, influence of molecular weight and polymer structure

  • Jakub Hrib,
  • Jakub Sirc,
  • Radka Hobzova,
  • Zuzana Hampejsova,
  • Zuzana Bosakova,
  • Marcela Munzarova and
  • Jiri Michalek

Beilstein J. Nanotechnol. 2015, 6, 1939–1945, doi:10.3762/bjnano.6.198

Graphical Abstract
  • ; nanofibrous carriers; needle-free electrospinning; release kinetics; Introduction To date, numerous drug delivery systems have been developed, such as hydrogels that carry drugs or highly sophisticated electronic microchips [1][2]. The required release rates of the therapeutic agents depend on the medicinal
PDF
Album
Full Research Paper
Published 25 Sep 2015

Atomic scale interface design and characterisation

  • Carla Bittencourt,
  • Chris Ewels and
  • Arkady V. Krasheninnikov

Beilstein J. Nanotechnol. 2015, 6, 1708–1711, doi:10.3762/bjnano.6.174

Graphical Abstract
  • , where these nanomaterials have been used as substrates for neural growth, as drug delivery systems and as electrodes for both extra cellular recordings and for in vivo recordings [21]. Finally, although carbon is often seen as the “poster child” of nanomaterials, it is important not to forget the
PDF
Editorial
Published 10 Aug 2015
Other Beilstein-Institut Open Science Activities