Search results

Search for "dyes" in Full Text gives 194 result(s) in Beilstein Journal of Nanotechnology.

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • photocatalyst prepared by dispersing TiO2 and BiOCl on the surface of diatomite for the first time. Rhodamine B (RhB) is one of the most commonly used dyes and is a highly toxic compound with potential carcinogenicity. It is often used in textile, painting, chemical and other industries. RhB released from these
  • indicates that BiOCl and TiO2 are mainly dispersed on the surface of diatomite, but not in the pores. The larger pore volume will be beneficial to the enrichment and degradation of dyes, thus showing a higher catalytic performance [33]. The surface chemical state of BTD was characterized by XPS. The survey
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Green fabrication of lanthanide-doped hydroxide-based phosphors: Y(OH)3:Eu3+ nanoparticles for white light generation

  • Tugrul Guner,
  • Anilcan Kus,
  • Mehmet Ozcan,
  • Aziz Genc,
  • Hasan Sahin and
  • Mustafa M. Demir

Beilstein J. Nanotechnol. 2019, 10, 1200–1210, doi:10.3762/bjnano.10.119

Graphical Abstract
  • as quantum dots [22], perovskites [23], organic dyes [24], etc. In the case of phosphors, combining a red phosphor with YAG:Ce3+ over a blue LED is the simplest way of increasing the CRI while reducing the CCT. Phosphors mostly consist of thermally and chemically stable inorganic hosts such as YAG
PDF
Album
Full Research Paper
Published 07 Jun 2019

A highly efficient porous rod-like Ce-doped ZnO photocatalyst for the degradation of dye contaminants in water

  • Binjing Hu,
  • Qiang Sun,
  • Chengyi Zuo,
  • Yunxin Pei,
  • Siwei Yang,
  • Hui Zheng and
  • Fangming Liu

Beilstein J. Nanotechnol. 2019, 10, 1157–1165, doi:10.3762/bjnano.10.115

Graphical Abstract
  • ; Introduction Organic dyes used in the textile and dye industries account for a large proportion of pollutants in wastewater. Most of the organic dyes used are difficult to degrade, resulting in irreversible damage to the environment [1]. Although many efficient approaches have been applied to manage this
  • ]. Recently, photocatalytic degradation of organic dyes using semiconductors has attracted much attention [6]. This refers to the process in which organic compounds are gradually oxidized into inorganic compounds or even H2O and CO2 under the synergistic effects of light and photocatalysis. ZnO is one of the
  • levels serve as electron traps for photogenerated electrons. In this way, the recombination of photoinduced holes and electrons is suppressed, which accelerates the transfer of electrons to dissolve oxygen molecules and to produce more superoxide radicals to degrade probe dyes [9][22]. As a result, CZO-4
PDF
Album
Full Research Paper
Published 03 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • photodegradation of diverse organic compounds, including the photodecolorization of dyes such as methylene blue (MB), methyl green (MG), acid red G, acid yellow 11, acid orange 11, and Congo red, in water, as well as other photo-applications, for instance, water splitting under UV or visible/solar light
  • harmful organic compounds, such as pesticides, phenols, dyes, and pharmaceuticals drugs to water, CO2, and non-toxic inorganic residues under solar light or UV irradiation. Advantages such as low cost and chemical stability are essential requirements of this type of photocatalysts [25][26]. In addition
  • surface area values are of the order of 50–100 m2/g whereas the ZnO NPs alone exhibit values below 15 m2/g. The mesoporosity (ca. 0.25 cm3/g total porosity) together the photoactivity of the ZnO NPs make these materials suitable photocatalysts for the removal of organic dyes from water [118]. ZnO–clay
PDF
Album
Review
Published 31 May 2019
Graphical Abstract
  • dyes without AuNTs under the same experimental conditions. Moreover, it is well known from literature that the utilization of Au NPs of the same size is associated with higher SERS enhancement factors [18], therefore suggesting that the performance of the AuNTs can be further improved by employing size
  • -selected nanospheres. Conclusion In this study, the performance of SERS labels based on Au NPs and organic dyes resonant at 633 nm was investigated by a combination of Raman and TEM analysis. The AuNTs were designed in order to support multiple electromagnetic hot spots for any polarization direction of
PDF
Album
Supp Info
Full Research Paper
Published 10 May 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • technologies such as dye-sensitized solar cells. A key optimization parameter for such devices is the choice of the compounds in order to control the direction and the intensity of charge transfer across the interface. Here, the deposition of two different molecular dyes, porphyrin and coumarin, as single
  • semiconductor after photon absorption [17][19][20], resulting in an electron transfer from the surface of the semiconductor towards the dyes (see Figure 1a). In other terms, the direction of charge transfer relies on the electron affinity of the dyes and on their HOMO and LUMO levels compared to the CB and VB
  • of the semiconductor. Typically, dyes are specifically designed to be compatible with one or the other type of device. Consequently, the careful choice of the dye is crucial for the optimal function of n- or p-type DSSCs. Because of its electron-donor character, copper(II) meso-tetrakis(4
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Polydopamine-coated Au nanorods for targeted fluorescent cell imaging and photothermal therapy

  • Boris N. Khlebtsov,
  • Andrey M. Burov,
  • Timofey E. Pylaev and
  • Nikolai G. Khlebtsov

Beilstein J. Nanotechnol. 2019, 10, 794–803, doi:10.3762/bjnano.10.79

Graphical Abstract
  • . Meanwhile different imaging and therapeutic agents can be loaded into the shell of multifunctional nanocomposites. Various AuNR-based nanocomposites loaded with anticancer drugs [17][18][19], photodynamic dyes [20][21], MRI contrast agents [22] and many others ligands [23][24] have already been reported for
  • capacity for various cargo molecules such as drugs or photodynamic dyes. Third, the coating should have functional groups and be ready for click conjugation with target or “shadowing” molecules, e.g., antibodies, peptides, folates and PEG. Finally, the AuNR coating procedure should be robust and provide a
  • provides additional potential advantages for in vivo experiments as compared to other inorganic coatings such as silica shells. It is well known [46] that the adsorption of fluorescent dyes on Au nanoparticles can induce quenching of their emission. However, in the AuNRs-PDA-R123-folate, the PDA layer
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Towards rare-earth-free white light-emitting diode devices based on the combination of dicyanomethylene and pyranine as organic dyes supported on zinc single-layered hydroxide

  • Jeff L. Nyalosaso,
  • Rachod Boonsin,
  • Pierre Vialat,
  • Damien Boyer,
  • Geneviève Chadeyron,
  • Rachid Mahiou and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2019, 10, 760–770, doi:10.3762/bjnano.10.75

Graphical Abstract
  • luminescent organic dyes in a single-layered hydroxide (SLH)-type inorganic matrix has been developed. Two fluorescent organic dyes emitting visible light upon blue LED excitation were investigated in this study: dicyanomethylene (DCM) and pyranine (HPTS). These dyes exhibit broad emission bands that cover a
  • large part of the visible spectrum. The concept developed in our work consisted in keeping SLH in its wet form to ensure a good dispersion of the fluorescent dyes prior to immobilizing the hybrid materials in a silicone polymer to achieve luminescent composite films. We demonstrate that these coatings
  • issue. In this context, it seems crucial to identify new cheap and REE-free phosphors capable of delivering cost-effective light energy conversion. Luminescent organic dyes are a relevant alternative to REEs. Indeed, they are known to exhibit high luminous efficiency at low cost and may be associated
PDF
Album
Full Research Paper
Published 25 Mar 2019

Ceria/polymer nanocontainers for high-performance encapsulation of fluorophores

  • Kartheek Katta,
  • Dmitry Busko,
  • Yuri Avlasevich,
  • Katharina Landfester,
  • Stanislav Baluschev and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2019, 10, 522–530, doi:10.3762/bjnano.10.53

Graphical Abstract
  • nitrogen or argon bubbling and/or freeze–pump–thaw cycles, the oxygen content can be lowered. These techniques are efficient enough to suppress the oxygen quenching of fluorescence [13]. The case of fluorescent samples containing dyes encapsulated in nanoconfined materials is more complicated. In general
  • scattering than visible light, causes less photodamage, and can penetrate deeper into tissues. Hence, it is preferred for life-science applications. Organic dyes that can be excited above 600 nm are highly favorable for live-cell imaging experiments, because the background signal obtained from the
  • the π-conjugated core system of highly fluorescent perylene-3,4:9,10-tetracarboxdimides. The rylene dyes have unique optical properties, such as high extinction coefficients, high thermal, chemical and photochemical stabilities, and exhibit brilliant colors [29][30]. Furthermore, in bulk samples, TDI
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

New micro/mesoporous nanocomposite material from low-cost sources for the efficient removal of aromatic and pathogenic pollutants from water

  • Emmanuel I. Unuabonah,
  • Robert Nöske,
  • Jens Weber,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2019, 10, 119–131, doi:10.3762/bjnano.10.11

Graphical Abstract
  • are reports of the use of clay/carbon materials for the removal of toxic micropollutants from water. In some cases, sugars have been used as starting compounds [17][18], while in other cases, dyes and other organic molecules have been loaded into the clay interlayer and calcined together with the clay
PDF
Album
Supp Info
Full Research Paper
Published 09 Jan 2019

Electrolyte tuning in dye-sensitized solar cells with N-heterocyclic carbene (NHC) iron(II) sensitizers

  • Mariia Karpacheva,
  • Catherine E. Housecroft and
  • Edwin C. Constable

Beilstein J. Nanotechnol. 2018, 9, 3069–3078, doi:10.3762/bjnano.9.285

Graphical Abstract
  • realized with ruthenium-based [2], zinc(II) porphyrin-based [5][6][7][8][9] or metal-free organic dyes [10][11][12]. In a recent review [2], Nazeeruddin points to the fact that only incremental enhancements of the photoconversion efficiencies of ruthenium dyes have occurred during the last two decades
  • , with N3 (first reported in 1993 [13]) and N719 [14] (Scheme 1) remaining the state-of-the-art dyes. The low natural abundance of ruthenium (≈0.001 ppm in the Earth's crust [15]) and its consequential high cost motivates thorough investigations of the use of dyes based on Earth-abundant metals. Among
  • . [21] have demonstrated the viability of DSCs comprising both copper(I)-based dyes and copper(I)/copper(II) redox shuttles. Photoconversion efficiencies in the range of 3–5% have been achieved for DSCs containing copper(I) dyes [22][23][24]. However, based upon the 800-fold greater natural abundance of
PDF
Album
Supp Info
Full Research Paper
Published 21 Dec 2018

A novel polyhedral oligomeric silsesquioxane-modified layered double hydroxide: preparation, characterization and properties

  • Xianwei Zhang,
  • Zhongzhu Ma,
  • Hong Fan,
  • Carla Bittencourt,
  • Jintao Wan and
  • Philippe Dubois

Beilstein J. Nanotechnol. 2018, 9, 3053–3068, doi:10.3762/bjnano.9.284

Graphical Abstract
  • ][19], amino acids [20], anionic dyes [11], and compounds of biological origin, such as β-cyclodextrin and eugenol derivatives [9][10][13][21]. However, most of these current modifiers do not have satisfactory thermal stability and are flammable, reducing the thermal and fire stability of the LDHs
PDF
Album
Full Research Paper
Published 19 Dec 2018

Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires

  • Antonino Foti,
  • Francesco Barreca,
  • Enza Fazio,
  • Cristiano D’Andrea,
  • Paolo Matteini,
  • Onofrio Maria Maragò and
  • Pietro Giuseppe Gucciardi

Beilstein J. Nanotechnol. 2018, 9, 2718–2729, doi:10.3762/bjnano.9.254

Graphical Abstract
  • tested on dyes, pigments and biomolecules and enhancement factors higher than 105 are observed. TERS mapping with a spatial resolution of 5 nm is demonstrated. Keywords: amyloid; enhanced spectroscopy; gold tips; plasmonics; TERS; Introduction Tip-enhanced Raman spectroscopy (TERS) combines the
  • times of approximately 2 min. The tips can be easily manipulated and safely mounted, by gluing or clamping them into STM- or ShF-based TERS setups. The good performance of the tips is highlighted by TERS spectra of dyes, pigments and biomolecules. The enhancement factor in the range of 104–105 was found
  • on the shaft (red line). Typical laser powers are 1.0–2.5 mW and integration times are 0.5–1.0 s per pixel. TERS spectra of dyes, pigments and biomolecules The tips have been applied to evaluate the spectra of analyze standard dye molecules such as rhodamine 6G (R6G), crystal violet (CV), methylene
PDF
Album
Supp Info
Full Research Paper
Published 22 Oct 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • –OH of CNC. This modified nanocellulose adsorbent was used for the removal of cationic dyes from aqueous solution by forming a bidentate arrangement between the dye and the adsorbent’s carboxy groups. Meanwhile, Anirudhan et al. [92][93] modified a nanocellulose/nanobentonite composite adsorbent with
  • displayed high uptake adsorption capacity for several cationic dyes such as methylene blue, basic fuchsin, crystal violet and malachite green [101]. Carboxylated CNC, with a high COOH content of 2.1 mmol/g, showed a significant uptake of about 769 mg/g for methylene blue as compared to CNC with surface
  • nanocellulose materials were able to adsorb metal ions due to the presence of amino (–NH2) on aminosilane and/or –OH groups on cellulose fibre. Besides, cationic functionality such as amine-functionalized nanocellulose is usually effective for the removal of anionic dyes. Zhu et al. [102] found that
PDF
Album
Review
Published 19 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • heterostructures exhibited substantially improved performance in the removal of industrial dyes (rhodamine B (RhB), methyl orange (MO), and methyl blue (MB)), and the antibiotic tetracycline hydrochloride (TC), compared with bare Bi2MoO6 and Ag2CO3 under visible-light irradiation. The enhancement of activity was
  • candidate for wastewater treatment. Keywords: antibiotic removal; Bi2MoO6; heterojunction; silver carbonate (Ag2CO3); Introduction Industrial pollutants, such as industrial dyes and antibiotics, in wastewaters pose a huge threat to the environment [1][2]. Thus, many methods for pollutant removal have been
  • the photocatalytic degradation of industrial dyes (rhodamine B (RhB), methyl orange (MO), and methyl blue (MB)), and the antibiotic tetracycline hydrochloride (TC) under visible light. The improved performance of the photocatalytic degradation was prominent, and the reasons were rationally analyzed
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

The role of adatoms in chloride-activated colloidal silver nanoparticles for surface-enhanced Raman scattering enhancement

  • Nicolae Leopold,
  • Andrei Stefancu,
  • Krisztian Herman,
  • István Sz. Tódor,
  • Stefania D. Iancu,
  • Vlad Moisoiu and
  • Loredana F. Leopold

Beilstein J. Nanotechnol. 2018, 9, 2236–2247, doi:10.3762/bjnano.9.208

Graphical Abstract
  • reducing or capping agent. The resulting AgNPs are already SERS-activated by the Cl− ions chemisorbed onto the metal surface where the chloride concentration in the colloidal solution is 10−2 M. Consequently, the enhanced SERS spectra of cationic dyes (e.g., crystal violet or 9-aminoacridine) demonstrate
  • -aminoacridine hydrochloride monohydrate were used as test analytes. Figure 4 shows comparatively the SERS spectra of the two cationic dyes obtained using the three silver colloids. By far, the Cl-AgNPs displayed the highest SERS intensity for both cationic dyes, followed by hya-AgNPs, which showed only low
  • the case of cit-AgNPs which were previously activated by adding 1 mM NaCl (Figure 6C). In summary, high-intensity SERS spectra of cationic dyes can be recorded with all three silver colloids after activation. For this, our recommendation is that the silver colloid should contain Cl− anions in a
PDF
Album
Supp Info
Full Research Paper
Published 22 Aug 2018

Dumbbell gold nanoparticle dimer antennas with advanced optical properties

  • Janning F. Herrmann and
  • Christiane Höppener

Beilstein J. Nanotechnol. 2018, 9, 2188–2197, doi:10.3762/bjnano.9.205

Graphical Abstract
  • , and retracting the antenna by 50 nm from the surface. The high quantum yield dyes Alexa633 and Alexa680 respectively, are applied for these measurements, which provide suitable absorption and emission properties in regard to the LSPR of the applied monomer and dimer AuNP antennas. Dark-field
PDF
Album
Full Research Paper
Published 17 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Sulfur-, nitrogen- and platinum-doped titania thin films with high catalytic efficiency under visible-light illumination

  • Boštjan Žener,
  • Lev Matoh,
  • Giorgio Carraro,
  • Bojan Miljević and
  • Romana Cerc Korošec

Beilstein J. Nanotechnol. 2018, 9, 1629–1640, doi:10.3762/bjnano.9.155

Graphical Abstract
  • are photocatalytically active under visible-light illumination. The photocatalytic activity of our samples was determined by measuring the degradation rate of plasmocorinth B (PB), an organic pigment belonging to the group of azo dyes. Azo dyes are used in the textile industry as textile colorants and
PDF
Album
Full Research Paper
Published 04 Jun 2018

Closed polymer containers based on phenylboronic esters of resorcinarenes

  • Tatiana Yu. Sergeeva,
  • Rezeda K. Mukhitova,
  • Irek R. Nizameev,
  • Marsil K. Kadirov,
  • Polina D. Klypina,
  • Albina Y. Ziganshina and
  • Alexander I. Konovalov

Beilstein J. Nanotechnol. 2018, 9, 1594–1601, doi:10.3762/bjnano.9.151

Graphical Abstract
  • resorcinarene (SRA) with phenylboronic acid. p(SRA-B) shows good stability in water and can be used as a nanocontainer for the pH- and glucose-controlled substrate release. Fluorescent dyes (fluorescein, pyrene and 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt) were successfully loaded into p(SRA-B). The
  • ) was examined as a container for pH- and glucose-controlled storage and as a source of substrates. Three dyes were chosen: fluorescein (Fl), pyrene (Py) and 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt (PTS). These dyes differ in polarity but all of them are used as fluorescent probes to determine
  • the environments solvent [46]. It is possible to control the location of the dyes in the container as well as their release when the container is destroyed, using fluorescence spectroscopy. The synthesis of the nanoparticles with the dyes (D@p(SRA-B), where D = Fl, Py and PTS) was carried out similar
PDF
Album
Supp Info
Full Research Paper
Published 29 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
PDF
Album
Review
Published 16 May 2018

Electro-optical interfacial effects on a graphene/π-conjugated organic semiconductor hybrid system

  • Karolline A. S. Araujo,
  • Luiz A. Cury,
  • Matheus J. S. Matos,
  • Thales F. D. Fernandes,
  • Luiz G. Cançado and
  • Bernardo R. A. Neves

Beilstein J. Nanotechnol. 2018, 9, 963–974, doi:10.3762/bjnano.9.90

Graphical Abstract
  • estimated via Raman scattering experiment is of order of 1013 cm−2, consistent with the value predicted from ab initio calculations. Conclusion Organic semiconductor dyes and 2D materials are classes of materials which have enormous potential applications by themselves. The possibility of creating hybrid
PDF
Album
Supp Info
Full Research Paper
Published 23 Mar 2018

Surface-plasmon-enhanced ultraviolet emission of Au-decorated ZnO structures for gas sensing and photocatalytic devices

  • T. Anh Thu Do,
  • Truong Giang Ho,
  • Thu Hoai Bui,
  • Quang Ngan Pham,
  • Hong Thai Giang,
  • Thi Thu Do,
  • Duc Van Nguyen and
  • Dai Lam Tran

Beilstein J. Nanotechnol. 2018, 9, 771–779, doi:10.3762/bjnano.9.70

Graphical Abstract
  • and reasonably fast response/recovery time were reported for a gas sensor based on Au-decorated ZnO structures. The highest selectivity towards NO2 was compared to other combustion gases such as CO, and C3H8. In addition, the photocatalytic decomposition of organic dyes under sunlight using PL
  • radicals (e.g., •O2−, •OOH, and •OH) at the surface, which are mainly involved in photocatalytic degradation of dyes into CO2 or harmless compounds [42]. Therefore, to further determine the ability of Au-decorated ZnO and ZnO sub-micrometer spheres in improving irradiation, PL spectra of an aqueous RhB
  • time-resolved photoluminescence spectra, which in turn supported our study of the design of efficient NO2 sensing devices and photocatalytic decomposition of organic dyes. The surface decoration of plasmonic Au nanoparticles has been demonstrated as an effective way to enhance the sensitivity and
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • DMPO–OH radical formation in photocatalysis. Fluorescent probe The fluorescein, 3-(p-hydroxyphenyl)fluorescein (HPF) and 3-(p-aminophenyl)fluorescein (APF) dyes have been used as reagents in photocatalytic reactions [131]. A strongly emissive fluorescein molecule, as shown in Figure 17a, was formed
PDF
Album
Review
Published 19 Feb 2018

Fabrication and photoactivity of ionic liquid–TiO2 structures for efficient visible-light-induced photocatalytic decomposition of organic pollutants in aqueous phase

  • Anna Gołąbiewska,
  • Marta Paszkiewicz-Gawron,
  • Aleksandra Sadzińska,
  • Wojciech Lisowski,
  • Ewelina Grabowska,
  • Adriana Zaleska-Medynska and
  • Justyna Łuczak

Beilstein J. Nanotechnol. 2018, 9, 580–590, doi:10.3762/bjnano.9.54

Graphical Abstract
  • reactions to ultraviolet (UV) irradiation [6]. To break through the aforementioned drawbacks, semiconductor coupling [7], sensitization by inorganic complexes or organic dyes [8][9], as well as metal nanoparticle (NP) deposition [10] and metal doping [11] have been applied and have revealed potential to
PDF
Album
Full Research Paper
Published 14 Feb 2018
Other Beilstein-Institut Open Science Activities