Search results

Search for "fibers" in Full Text gives 181 result(s) in Beilstein Journal of Nanotechnology.

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • techniques (XRD, FTIR and 29Si NMR spectroscopies, CHN analysis and SEM) that revealed interactions of LDH with the sepiolite fibers through the silanol groups present on the outer surface of sepiolite, together with the intercalation of MCPA in the LDH confirmed by the increase in the basal spacing from
  • fields [13][14][15]. Sepiolite (Figure 1A) is a natural hydrated magnesium silicate with the ideal formula [Si12O30Mg8(OH,F)4](H2O)4·8H2O [16][17], which exhibits high surface area and adsorption capacity due to the presence of silanol groups on the external surface of the clay fibers. These ≡SiOH groups
  • not produce true nanoarchitectonic materials. Hence, it is necessary to grow the LDH in the presence of the fibrous clay [31]. In fact, the presence of silanol groups along the external surface of the silicate fibers act as anchoring points at which the LDH grows, forming LDH particles with their
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • , ultrathin fibers of SiC and metal oxides as well as MO/SiC composites from polymer solutions [16][17][18][19]. The combination of unlimited length, highly porous microstructure, and high surface area come together to create ideal gas sensor materials. In this work, we prepared ZnO/SiC nanocomposite
  • Experimental part. The characteristics of the synthesized materials are summarized in Table 1. Figure 2 shows the scanning electron microscopy (SEM) micrographs of SiC (Figure 2a,c) and ZnO (Figure 2b,d) nanofibers in a polymer matrix (Figure 2a,b) and after annealing (Figure 2c,d). The polymeric fibers
  • containing polycarbosilane (Figure 2a) are tapered with a width of 8–10 μm and a thickness of about 200 nm. Exposure to high temperature and pressure, which is necessary for the formation of crystalline SiC, leads to the destruction of fibers and the formation of porous powders (Figure 2c) with an average
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices

  • Giulia Lo Dico,
  • Bernd Wicklein,
  • Lorenzo Lisuzzo,
  • Giuseppe Lazzara,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2019, 10, 1303–1315, doi:10.3762/bjnano.10.129

Graphical Abstract
  • attracting increasing attention in the development of nanoarchitectured materials in applications such as catalysis or biomedicine [8]. The presence of silanol groups at the external surface of the clay fibers allows for the easy assembly with different species facilitating the design and the build up of
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • Raman scattering (SERS) substrate was developed by facile deposition of silver nanoparticles onto cellulose fibers of ordinary laboratory filter paper. This was achieved by means of the silver mirror reaction in a manner to control both the size of the silver nanoparticles and the silver density of the
  • , respectively. The field-emission scanning electron microscopy (FE-SEM) images of the Ag-NP/cellulose-NF composite sheets in Figure 1 show that the surfaces of the cellulose fibers are decorated with silver particles. The comparison with SEM images of bare filter paper (Supporting Information File 1, Figure S1
  • samples Ag-NP/cellulose-NF–D (Figure 1g,h) and –E (Supporting Information File 1, Figure S2), where the cellulose fibers are fully coated with silver layers. In the samples Ag-NP/cellulose-NF–A, –B and –C (Figure 1a–f), silver nanoparticles with an average size of 46.5, 70.2, and 75.8 nm (Supporting
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Tailoring the magnetic properties of cobalt ferrite nanoparticles using the polyol process

  • Malek Bibani,
  • Romain Breitwieser,
  • Alex Aubert,
  • Vincent Loyau,
  • Silvana Mercone,
  • Souad Ammar and
  • Fayna Mammeri

Beilstein J. Nanotechnol. 2019, 10, 1166–1176, doi:10.3762/bjnano.10.116

Graphical Abstract
  • fibers, made by electrospinning [9]. Focusing on this latter class of materials, the polymer exhibiting the most interesting ferro-and piezoelectric properties is a semi-crystalline fluoropolymer: poly(vinylidene fluoride) or PVDF. Mixing PVDF with magnetic nanoparticles leads to a higher polymer
PDF
Album
Full Research Paper
Published 04 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • reactivity can be modified [48][49]. TiO2 and ZnO NPs with different shapes, sizes and exposed crystal facets were assembled to yield hollow particles, fibers, nanosheets, nanowires, nanorods, nanoflowers and nanobelts through various synthesis routes including template synthesis [50][51][52][53
PDF
Album
Review
Published 31 May 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • to serve as electrodes in the VRFB, since they combine the desired properties of the two components, namely good electron conductivity and high surface area. The carbon fibers as supporting material possess a high electron conductivity, while the amorphous carbon coating provides the catalytic
  • the porogen is removed, was performed to obtain highly porous carbon electrodes co-doped with nitrogen and sulfur. But not all of the formed carbon coating sticks to the surface of the felt fibers, some excess co-doped carbon material exists besides. This additional material is referred to as “bulk
  • material” in the following text (Figure 1). Structural characterization For a detailed insight into the morphology of the electrode, SEM images of the carbonized sample, N-doped carbon felt and S- and N-doped composite material were taken at two different magnifications (Figure 2). The fibers of the
PDF
Album
Full Research Paper
Published 28 May 2019

Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation

  • Ji-Shu Liu,
  • Xiao-Hui Li,
  • Abdul Qyyum,
  • Yi-Xuan Guo,
  • Tong Chai,
  • Hua Xu and
  • Jie Jiang

Beilstein J. Nanotechnol. 2019, 10, 1065–1072, doi:10.3762/bjnano.10.107

Graphical Abstract
  • 0.75 m erbium-doped fiber (EDF) with a 110 dB/m peak absorption coefficient at 1530 nm and a dispersion parameter (D) of −36 ps/nm/km. The EDF has an absorption coefficient of 70 dB/m at 980 nm. The fibers in our cavity are all SMF-28 optical fibers (including the pig-tailed fiber) with a dispersion
PDF
Album
Full Research Paper
Published 20 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • TGP-CSnPc-650Air, which is in agreement with the FESEM image. Surface species The presence of tin oxide on the thermally oxidized surface of the CSnPc-coated carbon fibers was confirmed by XPS. It should be noted here that the Sn content was below the detection limit for the elemental mapping by
  • heat treatment in Ar atmosphere at 700 °C, achieved concurrent nanoscale surface etching and SnO2 loading on the carbon fibers. Both the positive and the negative electrode reactions of VRFB were enhanced and the full cell tests showed the significant decreases in the overpotential for both the charge
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • crystalline building blocks of silk. Nanoscale optical and structural properties of silk have been measured from 100 nm thick longitudinal slices of silk fibers with ca. 10 nm resolution, the highest so far. Optical sub-wavelength resolution in hyperspectral mapping of absorbance and molecular orientation
  • differences between the reflectance and absorbance of silk fibers with ca. 10 nm resolution. Cross sections of silk fibers were prepared using an ultramicrotome. Silk was chosen due to its well-known spectral properties and its increasing applications as a biocompatible and biodegradable material [13][14
  • , China. The white and brown silk fibers used in this work are fibroin fibers obtained by degumming Bombyx mori and Antheraea pernyi silk fibres, respectively. To degum the fibres, the cocoons were boiled three times in an aqueous 0.5% (w/v) Na2CO3 solution to remove the sericin coating. The degummed silk
PDF
Album
Full Research Paper
Published 23 Apr 2019

An iridescent film of porous anodic aluminum oxide with alternatingly electrodeposited Cu and SiO2 nanoparticles

  • Menglei Chang,
  • Huawen Hu,
  • Haiyan Quan,
  • Hongyang Wei,
  • Zhangyi Xiong,
  • Jiacong Lu,
  • Pin Luo,
  • Yaoheng Liang,
  • Jianzhen Ou and
  • Dongchu Chen

Beilstein J. Nanotechnol. 2019, 10, 735–745, doi:10.3762/bjnano.10.73

Graphical Abstract
  • changes were demonstrated with the incident light angle, e.g., from cyan to blue, from orange-red to yellow, from blue-green to blue-purple, and from magenta to dark green. The SiO2/PET film was also applied to the surface of textile fibers, yielding structural colors [29][30][31]. Using a one-step
  • stainless steel tube and a carbon fiber as the anode and cathode under the action of a circular electric field, respectively, resulting in a cylindrical fibrous structure. The control over the electrodeposition voltage and time allowed for the fabrication of fibers with different thicknesses, and the
  • resulting fibers exhibited structural colors of blue, green, and red when the PS spheres with a diameter of 185, 230 and 290 nm, respectively, were employed [33][34][35]. A natural sedimentation method was also used to prepare a structurally colored SiO2 photonic crystal film. Changing the incident light
PDF
Album
Supp Info
Full Research Paper
Published 19 Mar 2019

Topochemical engineering of composite hybrid fibers using layered double hydroxides and abietic acid

  • Liji Sobhana,
  • Lokesh Kesavan,
  • Jan Gustafsson and
  • Pedro Fardim

Beilstein J. Nanotechnol. 2019, 10, 589–605, doi:10.3762/bjnano.10.60

Graphical Abstract
  • composites by utilizing the intermolecular hydrogen bonds in natural materials. These materials include wood pulp fibers, abietic acid (resin acid) and inexpensive metal salts. In this work, a hybrid composite was created using bleached and unbleached kraft pulp fibers as cellulose platform. In situ co
  • -precipitation of layered double hydroxide (LDH) was performed to grow LDH crystals on the surface of the cellulose fibers, followed by the immobilization of abietic acid (AA) on LDH-grafted cellulose. Here we aimed to benefit from the hydrogen bonding between –OH groups of cellulose and LDH, and the –COOH
  • groups of AA to obtain charge-directed assembly of one material on the other material. Thus, composite hybrid fibers (C-HF) were produced and then characterized by optical (CAM), spectroscopic (XRD, IR) and microscopic techniques (SEM) to determine their average length and distribution, structure and
PDF
Album
Supp Info
Full Research Paper
Published 28 Feb 2019

The effect of flexible joint-like elements on the adhesive performance of nature-inspired bent mushroom-like fibers

  • Elliot Geikowsky,
  • Serdar Gorumlu and
  • Burak Aksak

Beilstein J. Nanotechnol. 2018, 9, 2893–2905, doi:10.3762/bjnano.9.268

Graphical Abstract
  • packed, tilted and curved fibers of various dimensions to attach to surfaces. While the high elastic modulus of these fibers enables an extremely large number of fibers per unit area, where each fiber stands freely without sticking to its neighbors, the tilt/curvature provides them with the compliance
  • compliance of the tip. Here, we mimic this feature using tilted, mushroom-like, stiff fibers comprised of a stiff stalk of elastic modulus 126 MPa, a softer tip of elastic modulus 8.89 MPa, and a joint-like element of elastic modulus 0.45 MPa (very soft), 8.89 MPa (soft), or 126 MPa (stiff) in between. The
  • results from load–drag–pull (LDP) experiments performed along (gripping) and against (releasing) the tilt direction indicate that the soft and the very soft joint fibers performed superior to the stiff joint fibers and maintained directionally dependent performance. The soft joint fibers achieved up to 22
PDF
Album
Full Research Paper
Published 19 Nov 2018

Effect of electrospinning process variables on the size of polymer fibers and bead-on-string structures established with a 23 factorial design

  • Paulina Korycka,
  • Adam Mirek,
  • Katarzyna Kramek-Romanowska,
  • Marcin Grzeczkowicz and
  • Dorota Lewińska

Beilstein J. Nanotechnol. 2018, 9, 2466–2478, doi:10.3762/bjnano.9.231

Graphical Abstract
  • diameter of uniform and heterogeneous fibers (with and without bead-on-string structures) and the size of beads obtained during the electrospinning process. A 23 factorial design was performed to determine the influence of the following factors: electrical voltage, flow rate and dynamic viscosity of the
  • poly(vinylpyrrolidone) ethanolic solution. Factorial design enables the analysis of the mathematical relationship between the chosen factors and the response with a minimum number of experiments. The factor having the most significant impact on the size of beaded fibers and beads was the solution
  • diameters possible (i.e., from nanometers to several micrometers) for polymer fibers using this electrostatic method [1][2]. In addition, the technique is rather easy to employ and cost-efficient [3][4]. Currently, by modifying the experimental setup and controlling the properties of the polymer solutions
PDF
Album
Full Research Paper
Published 17 Sep 2018

Hierarchical heterostructures of Bi2MoO6 microflowers decorated with Ag2CO3 nanoparticles for efficient visible-light-driven photocatalytic removal of toxic pollutants

  • Shijie Li,
  • Wei Jiang,
  • Shiwei Hu,
  • Yu Liu,
  • Yanping Liu,
  • Kaibing Xu and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 2297–2305, doi:10.3762/bjnano.9.214

Graphical Abstract
  • , Zhejiang Ocean University, Zhoushan, Zhejiang Province 316022, China State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Research Center for Analysis and Measurement, Donghua University, Shanghai 201620, China State Environmental Protection Engineering Center for Pollution
PDF
Album
Supp Info
Full Research Paper
Published 27 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • materials used as an active sensing layer, including polymers, metal oxide semiconductors, graphene, and their composites or their functionalized forms. The material properties of these electrospun fibers and their sensing performance toward different analytes are explained in detail and correlated to the
  • these techniques, electrospinning is one of the most versatile and robust techniques for synthesis of functional nanofibers with unique structure and diverse properties [37][38][39][40]. The diameter of these functional fibers range between sub-micrometre to nanometre. The versatility of electrospinning
  • electrospinning as well as electrospraying. Electrospinning is a simple, robust and low-cost technique to generate polymer and composite fibers ranging from nanometres to a few micrometres in diameter [46][47]. In electrospinning, a high voltage source is used to produce fine fibers from a polymer solution or
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • discovery of their catalytic performance in the ORR: beginning with nitrogen-doped carbon fibres (2006 [18]), followed by carbon nanotubes (2009 [19]) and finally graphene (2010 [20]). In 2006, Matter and Ozkan reported on a metal-free ORR catalyst containing nitrogen-doped carbon fibers. The authors
  • compared the ORR activity of the fibers grown with and without iron. The latter showed significant ORR activity, although they were less performant than the iron-containing catalyst [18]. The first metal-free catalyst that showed an ORR activity superior to commercial Pt in alkaline fuel cells was reported
PDF
Album
Review
Published 18 Jul 2018

Biomimetic and biodegradable cellulose acetate scaffolds loaded with dexamethasone for bone implants

  • Aikaterini-Rafailia Tsiapla,
  • Varvara Karagkiozaki,
  • Veroniki Bakola,
  • Foteini Pappa,
  • Panagiota Gkertsiou,
  • Eleni Pavlidou and
  • Stergios Logothetidis

Beilstein J. Nanotechnol. 2018, 9, 1986–1994, doi:10.3762/bjnano.9.189

Graphical Abstract
  • are placed as coatings in medical devices in order to enhance the biocompatibility [2][3][4]. One technique to produce such coatings is electrospinning, which yields long micro- and nanofibers [5]. More specifically, physical and synthetic polymeric fibers of 30–20000 nm in length are produced by
  • and to be subsequently used for SEM analysis. Results and Discussion Development of drug-free and dexamethasone-loaded CA scaffolds Fibers of drug-free CA and CA loaded with dexamethasone were created through electrospinning. SEM and AFM indicated the successful fabrication of those structures (Figure
  •  1). Continuous fibers with smooth surface and free of any beads and other defects were obtained. In vitro degradation of non-woven CA fibers was investigated in DMEM solution at 37 °C over a period of 5 months (Figure 2). It should be mentioned that, CA is a semi-synthetic polymer, produced by the
PDF
Album
Full Research Paper
Published 13 Jul 2018

Preparation of micro/nanopatterned gelatins crosslinked with genipin for biocompatible dental implants

  • Reika Makita,
  • Tsukasa Akasaka,
  • Seiichi Tamagawa,
  • Yasuhiro Yoshida,
  • Saori Miyata,
  • Hirofumi Miyaji and
  • Tsutomu Sugaya

Beilstein J. Nanotechnol. 2018, 9, 1735–1754, doi:10.3762/bjnano.9.165

Graphical Abstract
  • natural tooth and periodontium, or their biomimetic equivalents. Collagen is a basic component of the periodontium and plays an important role in the function of the periodontal unit [15]. Bundles of collagen fibers in the periodontal ligament, including Sharpey’s fibers, are vertically arranged from the
  • surface of the tooth to the alveolar bone by their position and orientation. The resulting periodontal ligament fibers exhibit micro/nanopatterns arising as a result of the shape of bundles of collagen fibers [16][17][18]. Thus, coating surfaces with collagen has been used for dental implants to allow
  • implants [21][22]. It is also used as an absorbable hemostatic sponge to provide an occlusive matrix [23][24] and as a bone healing material in tissue engineering [25][26] in the field of dentistry. Recent studies have attempted to regenerate collagen fibers, lost as a result of periodontal disease, using
PDF
Album
Full Research Paper
Published 11 Jun 2018

Surface characterization of nanoparticles using near-field light scattering

  • Eunsoo Yoo,
  • Yizhong Liu,
  • Chukwuazam A. Nwasike,
  • Sebastian R. Freeman,
  • Brian C. DiPaolo,
  • Bernardo Cordovez and
  • Amber L. Doiron

Beilstein J. Nanotechnol. 2018, 9, 1228–1238, doi:10.3762/bjnano.9.114

Graphical Abstract
  • output edge where transmitted light is collected by a photodetector. Three polarization-maintaining optical fibers are supported by a silicon v-groove array and are optically aligned to the three waveguides permanently bonded to the chips. Each chip has two through-holes for fluidic access. Fluid lines
  • deionized water. Optofluidic chip is secured in a chip cassette and is permanently bonded to three optical fibers, which deliver laser light to the three waveguides on the chip surface. The chip also has a microfluidic channel with inlet and outlet holes. (A) Near-field light scattering with relevant forces
PDF
Album
Full Research Paper
Published 18 Apr 2018

Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations

  • Jaison Jeevanandam,
  • Ahmed Barhoum,
  • Yen S. Chan,
  • Alain Dufresne and
  • Michael K. Danquah

Beilstein J. Nanotechnol. 2018, 9, 1050–1074, doi:10.3762/bjnano.9.98

Graphical Abstract
  • town, the main source of atmospheric micro- and nanoparticles is automobile exhaust [88]. Amongst the types of automobile exhaust, diesel engines release 20–130 nm sized particles whereas gasoline engines release 20–60 nm sized particles [89][90]. It has been found that CNTs and fibers are released as
  • than 10 μm are released into the atmosphere when larger buildings are demolished [103]. Other than building debris, lead, glass, respirable asbestos fibers and other toxic particles from household materials are released as nanosized particles around the site of building demolition [103]. Cigarette
  • drugs that can inhibit the growth of these harmful bacteria in its early stage. Nanoparticles and nanostructures in plants Wood is made of natural fibers that are considered as cellular hierarchical bio-composites. Natural fibers are composites of cellulosic-fibrils at the nanoscale level. The simplest
PDF
Album
Review
Published 03 Apr 2018

Bioinspired self-healing materials: lessons from nature

  • Joseph C. Cremaldi and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2018, 9, 907–935, doi:10.3762/bjnano.9.85

Graphical Abstract
  • cell size/shape [14]. Figure 2A shows the hierarchical levels of muscle structure in a human, building from the basic components of actin and myosin proteins to sarcomeres and muscle fibers that form a muscle [39]. Skeletal muscle is striated and used for voluntary movements. Smooth, or nonstriated
  • , muscle is used for involuntary muscle movements such as breathing and digestion. Last, cardiac muscles are involuntary, striated muscles used in the movement of the heart and are organized into a complex linkage between sarcomere fibers. Invertebrates have several types of muscles related to body
PDF
Album
Review
Published 19 Mar 2018

Single-step process to improve the mechanical properties of carbon nanotube yarn

  • Maria Cecilia Evora,
  • Xinyi Lu,
  • Nitilaksha Hiremath,
  • Nam-Goo Kang,
  • Kunlun Hong,
  • Roberto Uribe,
  • Gajanan Bhat and
  • Jimmy Mays

Beilstein J. Nanotechnol. 2018, 9, 545–554, doi:10.3762/bjnano.9.52

Graphical Abstract
  • Science and Engineering, University of Tennessee, Knoxville, TN 37996, USA Center for Nanophase Materials Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA College of Applied Engineering, Sustainability and Technology, Kent State University, Kent, OH 44240, USA Fibers and textiles
  • Department, University of Georgia, Athens, GA 30602, USA 10.3762/bjnano.9.52 Abstract Carbon nanotube (CNT) yarns exhibit low tensile strength compared to conventional high-performance carbon fibers due to the facile sliding of CNTs past one another. Electron beam (e-beam) irradiation was employed for in a
  • challenge to assemble CNTs in materials on the macroscopic scale [3]. Because of the difficulties in dispersing pristine CNTs in polymers, the assembly of CNTs into macroscopic fibers, with the tubes aligned parallel along the CNT yarn axis, has been focused on [4][5][6][7][8][9][10][11][12][13]. There are
PDF
Album
Full Research Paper
Published 13 Feb 2018

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • history of using plant cellulose fibers as reinforcements in polymer composite materials [13][14]. However, the use of nanoscale cellulose fibers to reinforce polymers is a relatively recent effort [15][16]. Despite the challenges described below, CNFs have been combined with various polymer matrices
PDF
Album
Full Research Paper
Published 12 Feb 2018
Other Beilstein-Institut Open Science Activities