Search results

Search for "graphene oxide" in Full Text gives 144 result(s) in Beilstein Journal of Nanotechnology.

Oriented zinc oxide nanorods: A novel saturable absorber for lasers in the near-infrared

  • Pavel Loiko,
  • Tanujjal Bora,
  • Josep Maria Serres,
  • Haohai Yu,
  • Magdalena Aguiló,
  • Francesc Díaz,
  • Uwe Griebner,
  • Valentin Petrov,
  • Xavier Mateos and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2018, 9, 2730–2740, doi:10.3762/bjnano.9.255

Graphical Abstract
  • ” saturable absorbers (SAs) for lasers operating in the passively Q-switched (PQS) and mode-locked regimes. These include carbon nanostructures (e.g., graphene, graphene oxide, graphite nanoparticles, single-walled carbon nanotubes (SWCNTs)) [12][13][14][15], few-layer transition metal dichalcogenides (TMDs
PDF
Album
Full Research Paper
Published 23 Oct 2018

Nanocellulose: Recent advances and its prospects in environmental remediation

  • Katrina Pui Yee Shak,
  • Yean Ling Pang and
  • Shee Keat Mah

Beilstein J. Nanotechnol. 2018, 9, 2479–2498, doi:10.3762/bjnano.9.232

Graphical Abstract
  • nanostructures in the form of thin film, membrane, fibre and hybrid materials under UV and visible light irradiation. Nanocellulose–metal oxide (TiO2, ZnO, graphene oxide, and Fe2O3) composites have been used as photocatalysts to improve the degradation rate of organic pollutants as compared to individual
  • synergistic effect that enhanced the catalytic performance of the individual materials. Besides, Pastrana-Martínez et al. [124] observed that three photocatalysts, i.e., commercial TiO2 P25, lab-made TiO2, and graphene oxide doped TiO2 (GO-TiO2), which were assembled on flat sheet cellulose membranes
PDF
Album
Review
Published 19 Sep 2018

Nanotribology

  • Enrico Gnecco,
  • Susan Perkin,
  • Andrea Vanossi and
  • Ernst Meyer

Beilstein J. Nanotechnol. 2018, 9, 2330–2331, doi:10.3762/bjnano.9.217

Graphical Abstract
  • including nanodiamonds [1] and novel materials such as nitrogen-doped graphene oxide [2] and imidazolium-based ionic liquids [3] used as additives to mineral oils. Standard large-scale applications to steel surfaces, but also to a material of key importance in micro- and nanoelecromechanical systems, i.e
PDF
Editorial
Published 28 Aug 2018

Electrospun one-dimensional nanostructures: a new horizon for gas sensing materials

  • Muhammad Imran,
  • Nunzio Motta and
  • Mahnaz Shafiei

Beilstein J. Nanotechnol. 2018, 9, 2128–2170, doi:10.3762/bjnano.9.202

Graphical Abstract
  • polyurethane (PU) nanofibers using electrospinning [64]. These nanoparticles embedded in polymer nanofibers could be promising materials for room temperature gas sensing. Furthermore, graphene oxide (GO) sheets have also been incorporated with electrospun polyacrylonitrile (PAN) fibers [65][66][67]. The fibers
PDF
Album
Supp Info
Review
Published 13 Aug 2018

Metal-free catalysis based on nitrogen-doped carbon nanomaterials: a photoelectron spectroscopy point of view

  • Mattia Scardamaglia and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2018, 9, 2015–2031, doi:10.3762/bjnano.9.191

Graphical Abstract
  • -sensitized solar cells [67]. A high-performance anode material for lithium-ion batteries was obtained using graphene co-doped with nitrogen and fluorine, which was prepared by a hydrothermal reaction of an aqueous dispersion of graphene oxide with trimethylamine trihydrofluoride [68]. In nitrogen-doped
  • underwent different temperature treatments, yielding different surface compositions of nitrogen functionalities, as observed by XPS [114]. They produced N-graphene either by the annealing of graphene oxide (GO) in NH3 or by annealing a composite of N-containing polymer (polyaniline or polypyrrole) and rGO
PDF
Album
Review
Published 18 Jul 2018

SO2 gas adsorption on carbon nanomaterials: a comparative study

  • Deepu J. Babu,
  • Divya Puthusseri,
  • Frank G. Kühl,
  • Sherif Okeil,
  • Michael Bruns,
  • Manfred Hampe and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 1782–1792, doi:10.3762/bjnano.9.169

Graphical Abstract
  • -walled carbon nanotubes (SWNTs) and vertically aligned carbon nanotubes (VACNTs) are investigated and compared against the adsorption characteristics of activated carbon and graphene oxide (GO). A comprehensive overview of the adsorption behavior of this family of carbon adsorbents is given for the first
  • nanohorns (CNHs), graphene and graphene oxide were discovered. Unlike activated carbon, these nanomaterials have a defined geometry with distinct pore structure. Sun et al. investigated the SO2 adsorption characteristics of SWNTs, MWNTs and activated carbon at atmospheric pressure and at very low SO2
  • -graphene layers [18]. With this morphology it represents a typological carbon adsorbent with extended structural disorder. Graphene oxide (GO) has a 2D layered structure as shown schematically in Figure 1b. The starting material for the synthesis of GO is graphite, the oxidation of which introduces oxygen
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2018

Sheet-on-belt branched TiO2(B)/rGO powders with enhanced photocatalytic activity

  • Huan Xing,
  • Wei Wen and
  • Jin-Ming Wu

Beilstein J. Nanotechnol. 2018, 9, 1550–1557, doi:10.3762/bjnano.9.146

Graphical Abstract
  • -on-belt branched TiO2(B) powder was synthesized with the simultaneous incorporation of reduced graphene oxide (rGO). The monophase, hierarchically nanostructured TiO2(B) exhibited a reaction rate constant 1.7 times that of TiO2(B)/rGO and 2.9 times that of pristine TiO2(B) nanobelts when utilized to
  • assist the photodegradation of phenol in water under UV light illumination. The enhanced photocatalytic activity can be attributed to the significantly increased surface area and enhanced charge separation. Keywords: branched nanostructure; photocatalysis; reduced graphene oxide; TiO2(B); Introduction
  • harvesting efficiency, which also contributes to increased photocatalytic activity [22][27]. Herein, we report a novel approach to synthesize branched TiO2(B) nanobelts incorporated at the same time with reduced graphene oxide (rGO). The unique sheet-on-belt nanostructure demonstrates a high specific surface
PDF
Album
Supp Info
Full Research Paper
Published 24 May 2018

Cr(VI) remediation from aqueous environment through modified-TiO2-mediated photocatalytic reduction

  • Rashmi Acharya,
  • Brundabana Naik and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 1448–1470, doi:10.3762/bjnano.9.137

Graphical Abstract
  • six sections. The optical and electrochemical characteristics of modified TiO2 photocatalysts are discussed in the first section. In the second section, we have reviewed how carbon-based advanced materials like reduced graphene oxide (RGO), carbon nanotubes (CNTs) and carbon dots (CDs) improve the
  • TiO2 are listed in Table 1. Photocatalytic reduction of Cr(VI) over reduced graphene oxide modified TiO2 Graphene is a single layer of two-dimensional carbon material with graphite structure. Because of its low cost, excellent conductivity, superior chemical stability and exceptionally high specific
  • with visible light, in the second step. Third step involves either release of Cr(III) species into the solution due to their electrostatic repulsion from the protonated surfaces of TiO2–RGO or their adsorption by deprotonated surfaces. Li et al. fabricated a composite of TiO2 and reduced graphene oxide
PDF
Album
Review
Published 16 May 2018

Electrodeposition of reduced graphene oxide with chitosan based on the coordination deposition method

  • Mingyang Liu,
  • Yanjun Chen,
  • Chaoran Qin,
  • Zheng Zhang,
  • Shuai Ma,
  • Xiuru Cai,
  • Xueqian Li and
  • Yifeng Wang

Beilstein J. Nanotechnol. 2018, 9, 1200–1210, doi:10.3762/bjnano.9.111

Graphical Abstract
  • attention due to its appealing applications for sensors, supercapacitors and lithium-ion batteries. However, there are still some limitations in the current electrodeposition methods for graphene. Here, we present a novel electrodeposition method for the direct deposition of reduced graphene oxide (rGO
  • , which can then be used for electrochemical detection. Keywords: chitosan; coordination; electrodeposition; nanocomposite films; reduced graphene oxide; Introduction Graphene has attracted tremendous attention due to its large surface area, excellent mechanical strength, high electronic conductivity
  • and good adsorption capacity [1][2].Graphene has a diverse range of applications in solar cells, hydrogen storage materials, electroluminescent devices and electrode materials [3][4][5]. In particular, graphene or reduced graphene oxide (rGO) and biopolymer (e.g., gellan gum, chitosan, and alginate
PDF
Album
Full Research Paper
Published 17 Apr 2018

Electrostatic force spectroscopy revealing the degree of reduction of individual graphene oxide sheets

  • Yue Shen,
  • Ying Wang,
  • Yuan Zhou,
  • Chunxi Hai,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 1146–1155, doi:10.3762/bjnano.9.106

Graphical Abstract
  • (EFM) phase with high resolution as a function of the electrical direct current bias applied either to the probe or sample. Based on the dielectric constant difference of graphene oxide (GO) sheets (reduced using various methods), EFS can be used to characterize the degree of reduction of uniformly
  • reduced one-atom-thick GO sheets at the nanoscale. In this paper, using thermally or chemically reduced individual GO sheets on mica substrates as examples, we characterize their degree of reduction at the nanoscale using EFS. For the reduced graphene oxide (rGO) sheets with a given degree of reduction
  • ; electrostatic force microscopy; electrostatic force spectroscopy; graphene oxide; Introduction Graphene is a two dimensional (2D) crystal with superior mechanical [1], thermal [2], electrical [3][4] and optical [5] properties. It can be produced using graphene oxide (GO) as a precursor through cost-effective
PDF
Album
Full Research Paper
Published 11 Apr 2018

Nanoscale mapping of dielectric properties based on surface adhesion force measurements

  • Ying Wang,
  • Yue Shen,
  • Xingya Wang,
  • Zhiwei Shen,
  • Bin Li,
  • Jun Hu and
  • Yi Zhang

Beilstein J. Nanotechnol. 2018, 9, 900–906, doi:10.3762/bjnano.9.84

Graphical Abstract
  • studies and applications. Here, we report a novel method for the characterization of local dielectric distributions based on surface adhesion mapping by atomic force microscopy (AFM). The two-dimensional (2D) materials graphene oxide (GO), and partially reduced graphene oxide (RGO), which have similar
  • : adhesion; atomic force microscopy (AFM); graphene oxide (GO); nanoscale dielectric properties; reduced graphene oxide (RGO); Introduction The local dielectric distribution is a key factor that influences the physical properties and functionalities of various materials such as polymer nanocomposites [1][2
  • samples [39] or lifting of the AFM tip to scan for a second time [40], which may result in a lower spatial resolution. The method was validated by local dielectric mapping of graphene oxide (GO) and reduced graphene oxide (RGO), which have similar thicknesses but large differences in their dielectric
PDF
Album
Supp Info
Full Research Paper
Published 16 Mar 2018

Graphene composites with dental and biomedical applicability

  • Sharali Malik,
  • Felicite M. Ruddock,
  • Adam H. Dowling,
  • Kevin Byrne,
  • Wolfgang Schmitt,
  • Ivan Khalakhan,
  • Yoshihiro Nemoto,
  • Hongxuan Guo,
  • Lok Kumar Shrestha,
  • Katsuhiko Ariga and
  • Jonathan P. Hill

Beilstein J. Nanotechnol. 2018, 9, 801–808, doi:10.3762/bjnano.9.73

Graphical Abstract
  • materials. They must be compatible with oral fluids, must not release toxic products into the oral location and must have sufficient strength and durability to be fit for purpose [4]. Most other studies of graphene-dental polymer materials have used graphene oxide (GO) [5] which may be cytotoxic [6][7
  • rather than graphene oxide [14][15]. FLG-dental polymers Six types of FLG-dental polymers were made up; one control plus five with different loadings of graphene. Figure 3 shows FLG-polymer A (lowest concentration of FLG) and FLG-polymer E (highest concentration of FLG used), hence E appears much darker
PDF
Album
Full Research Paper
Published 05 Mar 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
PDF
Review
Published 27 Feb 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • photoreduction of graphene oxide (GO) to graphene or reduced graphene oxide (rGO) by Wu et al. Their study revealed the photocatalytic Ag NP reduction at λ > 390 nm [95]. The schematic diagram representing the interaction of GO with Ag is shown in Figure 8. The LSPR effect on the Ag NPs generated a strong
PDF
Album
Review
Published 19 Feb 2018

Anchoring Fe3O4 nanoparticles in a reduced graphene oxide aerogel matrix via polydopamine coating

  • Błażej Scheibe,
  • Radosław Mrówczyński,
  • Natalia Michalak,
  • Karol Załęski,
  • Michał Matczak,
  • Mateusz Kempiński,
  • Zuzanna Pietralik,
  • Mikołaj Lewandowski,
  • Stefan Jurga and
  • Feliks Stobiecki

Beilstein J. Nanotechnol. 2018, 9, 591–601, doi:10.3762/bjnano.9.55

Graphical Abstract
  • Academy of Sciences, M. Smoluchowskiego 17, 60-179 Poznań, Poland Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland 10.3762/bjnano.9.55 Abstract Reduced graphene oxide–magnetite hybrid aerogels attract great interest thanks to their potential applications, e.g., as
  • magnetic actuators. However, the tendency of magnetite particles to migrate within the matrix and, ultimately, escape from the aerogel structure, remains a technological challenge. In this article we show that coating magnetite particles with polydopamine anchors them on graphene oxide defects
  • ; polydopamine; reduced graphene oxide; Introduction Preparation of hybrid aerogels based on two-dimensional carbon nanomaterials with unique physicochemical properties is among the most popular recent nanotechnological trends [1]. With this respect, graphene oxide (GO) is one of the most exploited aerogel
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2018

Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition

  • Nagamalai Vasimalai,
  • Vânia Vilas-Boas,
  • Juan Gallo,
  • María de Fátima Cerqueira,
  • Mario Menéndez-Miranda,
  • José Manuel Costa-Fernández,
  • Lorena Diéguez,
  • Begoña Espiña and
  • María Teresa Fernández-Argüelles

Beilstein J. Nanotechnol. 2018, 9, 530–544, doi:10.3762/bjnano.9.51

Graphical Abstract
  • characteristic peaks of graphene oxide [42][43][44], and they are also in agreement with the HR-TEM lattice distances measured. FTIR spectroscopy of the synthesized C-dots confirms the presence of different functional groups in each sample depending on the starting material. The FTIR spectrum of cinnamon C-dots
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2018

Ultralight super-hydrophobic carbon aerogels based on cellulose nanofibers/poly(vinyl alcohol)/graphene oxide (CNFs/PVA/GO) for highly effective oil–water separation

  • Zhaoyang Xu,
  • Huan Zhou,
  • Sicong Tan,
  • Xiangdong Jiang,
  • Weibing Wu,
  • Jiangtao Shi and
  • Peng Chen

Beilstein J. Nanotechnol. 2018, 9, 508–519, doi:10.3762/bjnano.9.49

Graphical Abstract
  • 10.3762/bjnano.9.49 Abstract With the worsening of the oil-product pollution problem, oil–water separation has attracted increased attention in recent years. In this study, a porous three-dimensional (3D) carbon aerogel based on cellulose nanofibers (CNFs), poly(vinyl alcohol) (PVA) and graphene oxide (GO
  • facile preparation process of carbon aerogels, these materials are viable candidates for use in oil–water separation and environmental protection. Keywords: 3D network structure; carbon aerogel; cellulose nanofibers; graphene oxide; oil absorption; poly(vinyl alcohol); Introduction In recent years, oil
  • to remove the excess metal ions. After the chemical treatment, the slurry of 1 wt % purified cellulose was ground by a grinder to obtain a CNF slurry [46]. Preparation of graphene oxide GO was synthesized from graphite powder using a modified Hummers’ method [47][48]. The fabrication process was
PDF
Album
Full Research Paper
Published 12 Feb 2018

Blister formation during graphite surface oxidation by Hummers’ method

  • Olga V. Sinitsyna,
  • Georgy B. Meshkov,
  • Anastasija V. Grigorieva,
  • Alexander A. Antonov,
  • Inna G. Grigorieva and
  • Igor V. Yaminsky

Beilstein J. Nanotechnol. 2018, 9, 407–414, doi:10.3762/bjnano.9.40

Graphical Abstract
  • microscopy (AFM); graphene; graphite intercalation compounds (GICs); graphite oxide (GO); highly annealed pyrolythic graphite (HAPG); Introduction Graphite oxide (GO) and its single-layer derivative, graphene oxide, are of great importance due to their potential applications as a part of supercapacitors
  • , lithium-ion batteries, catalysts, systems for water pollution treatment, nonlinear optical devices and sensors [1][2][3][4]. One of the most important applications of graphene oxide is the synthesis of reduced graphene oxide, which exhibits properties similar to graphene [4][5]. The formation of GO
  • to note that a similar surface relief was observed in [23] for graphene oxide obtained by Hummers’ method. Most likely, graphene oxide inherits the microstructure from an intermediate GIC. Particular attention was paid to regions containing bunches of the cleavage steps (Figure 8). Some steps became
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • only improve the colloidal stability of Ag NPs but also improve their antibacterial characteristics. A wide range of materials, such as graphene oxide [30][31], carbon nanotubes [32], SiO2 [33], Fe3O4 [34], ZnO [35], CuO [36], TiO2 [37] and others, have been tested as the supports for Ag NPs. Compared
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Advances in nanocarbon composite materials

  • Sharali Malik,
  • Arkady V. Krasheninnikov and
  • Silvia Marchesan

Beilstein J. Nanotechnol. 2018, 9, 20–21, doi:10.3762/bjnano.9.3

Graphical Abstract
  • , Moldova, Korea, China, Japan, Australia and New Zealand. This Thematic Series highlights virtually all subfields of advanced nanocarbon materials research, from the longer established fields of carbon nanofibers, graphene oxide (GO) and multiwalled carbon nanotubes (MWCNTs) in composite materials, to the
PDF
Editorial
Published 03 Jan 2018

L-Lysine-grafted graphene oxide as an effective adsorbent for the removal of methylene blue and metal ions

  • Yan Yan,
  • Jie Li,
  • Fangbei Kong,
  • Kuankuan Jia,
  • Shiyu He and
  • Baorong Wang

Beilstein J. Nanotechnol. 2017, 8, 2680–2688, doi:10.3762/bjnano.8.268

Graphical Abstract
  • of education key laboratory with modern metallurgical technology, North China University of Science and Technology, Tangshan 63000, China 10.3762/bjnano.8.268 Abstract In this paper, novel L-lysine-modified graphene oxide (Lys-GO) was synthesized through amidation. The morphological and structural
  • , a MoSx/3D-graphene hybrid material as an electrode material enhanced the efficiency of hydrogen-producing in a fuel cell [8]. Mo et al. reported reduced graphene oxide covalently functionalized with L-lysine [9], which could be used for the electrochemical recognition of tryptophan (Trp) enantiomers
  • . Reduced graphene oxide as an effective adsorbent can be used for the removal of malachite green dye and metal ions [10][11]. A high-performance hydrophilic polyvinylidene fluoride/graphene oxide (PVDF/GO)–lysine composite membrane can be used for sea water desalination and purification [12]. However, the
PDF
Album
Full Research Paper
Published 13 Dec 2017

Synthesis of metal-fluoride nanoparticles supported on thermally reduced graphite oxide

  • Alexa Schmitz,
  • Kai Schütte,
  • Vesko Ilievski,
  • Juri Barthel,
  • Laura Burk,
  • Rolf Mülhaupt,
  • Junpei Yue,
  • Bernd Smarsly and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2017, 8, 2474–2483, doi:10.3762/bjnano.8.247

Graphical Abstract
  • metals are readily immobilized on graphene oxide by means of cation exchange with carboxylic acid groups, followed by thermal reduction to produce metal nanoparticles supported on functionalized graphene. Such palladium nanoparticles supported on graphene were used as highly active catalysts for the
  • functionalities. Results and Discussion Transition-metal amidinates [M(AMD)n; M = Fe(II), Co(II), Pr(III)] as well as Eu(dpm)3 were dissolved or suspended under nitrogen atmosphere in the dried and deoxygenated ionic liquid together with the selected type of thermally reduced graphene oxide (TRGO). Complete
  • water the IL was dried under ultra-high vacuum (10−7 mbar) at 60 °C for several days. Thermally reduced graphene oxide (TRGO) was prepared in a two-step oxidation/thermal reduction process using natural graphite (type KFL 99.5 from AMG Mining AG, former Kropfmühl AG, Passau, Germany) as raw material
PDF
Album
Supp Info
Full Research Paper
Published 22 Nov 2017

Freestanding graphene/MnO2 cathodes for Li-ion batteries

  • Şeyma Özcan,
  • Aslıhan Güler,
  • Tugrul Cetinkaya,
  • Mehmet O. Guler and
  • Hatem Akbulut

Beilstein J. Nanotechnol. 2017, 8, 1932–1938, doi:10.3762/bjnano.8.193

Graphical Abstract
  • microwave hydrothermal synthesis, and graphene oxide (GO) nanosheets were prepared by oxidation of graphite using a modified Hummers’ method. Freestanding graphene/MnO2 cathodes were manufactured through a vacuum filtration process. The structure of the graphene/MnO2 nanocomposites was characterized using X
  • ), (130), (210), (400), (211), (402), (020), (421) planes of γ-MnO2 [23]. Figure 3b shows XRD patterns of graphene oxide, graphene/α-MnO2, graphene/β-MnO2 and graphene/γ-MnO2 composite structures. The graphene peak observed at a 2θ value of 25.8o indicates the (002) plane of carbon. However, there are
  • still some remaining graphene oxide phases observed at 2θ values of 10.9o in graphene/α-MnO2 and graphene/β-MnO2, while almost all graphene oxide is transformed to graphene in the graphene/γ-MnO2 structure [24][25][26]. Further phase characterization of graphene/α-MnO2, graphene/β-MnO2 and graphene/γ
PDF
Album
Full Research Paper
Published 14 Sep 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • during carbonization. Thus, the understanding of the oxidation mechanism is an essential part of the production of CNF. The oxidation process of polyacrylonitrile was studied and nanofiber webs containing graphene oxide (GO) are obtained to improve the electrochemical properties of CNF. Structural and
  • interior pores filled with electrolyte. Keywords: carbon nanofiber; graphene oxide; oxidized polyacrylonitrile (PAN); Introduction Carbon nanofibers are of great interest because of their chemical similarity to fullerenes and carbon nanotubes. Carbon nanofibers (CNF) have promising electrochemical and
  • ]. Graphene oxide has been synthesized from graphite with strong acids and oxidants [24][25]. The oxidation level can be adjusted by modifying reaction conditions and systems, and the type of precursor. Moreover, oxygen functional groups increase wettability and capacitance, but not all of the surface oxygen
PDF
Album
Full Research Paper
Published 07 Aug 2017

Two-dimensional carbon-based nanocomposites for photocatalytic energy generation and environmental remediation applications

  • Suneel Kumar,
  • Ashish Kumar,
  • Ashish Bahuguna,
  • Vipul Sharma and
  • Venkata Krishnan

Beilstein J. Nanotechnol. 2017, 8, 1571–1600, doi:10.3762/bjnano.8.159

Graphical Abstract
  • photocatalytic degradation of adsorbed pollutants [48]. Several chemical and physical methods have been developed for the synthesis of graphene and graphene-based nanocomposites. One of the well-known methods for graphene oxide synthesis is Hummers’ method, which includes chemical oxidation of graphite flakes to
  • form graphene oxide (GO) [49]. GO contains carboxyl, epoxides and hydroxyl groups covalently attached to the graphene sheet. This leads to the loss of electrical conductivity and limits the application of GO in many areas. However, the presence of polar functional groups in GO makes it hydrophilic in
  • nature and it is responsible for the easy dispersal in many solvents such as water, which is helpful for the formation of various composites [50]. The reduction of GO in various reducing conditions forms reduced graphene oxide (RGO) in which electrical conductivity is partly revived. This RGO is also
PDF
Album
Review
Published 03 Aug 2017
Other Beilstein-Institut Open Science Activities