Search results

Search for "hybrid" in Full Text gives 557 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

A bifunctional superconducting cell as flux qubit and neuron

  • Dmitrii S. Pashin,
  • Pavel V. Pikunov,
  • Marina V. Bastrakova,
  • Andrey E. Schegolev,
  • Nikolay V. Klenov and
  • Igor I. Soloviev

Beilstein J. Nanotechnol. 2023, 14, 1116–1126, doi:10.3762/bjnano.14.92

Graphical Abstract
  • feature allows for the use of the proposed scheme in superconducting neural networks, such as perceptrons, integrated into hybrid quantum-neuromorphic computers. Moreover, the temperature affects the steepness of the sigmoid function. Even the manifestation of hysteresis in flux-to-flux transformations
PDF
Album
Full Research Paper
Published 21 Nov 2023

Dual-heterodyne Kelvin probe force microscopy

  • Benjamin Grévin,
  • Fatima Husainy,
  • Dmitry Aldakov and
  • Cyril Aumaître

Beilstein J. Nanotechnol. 2023, 14, 1068–1084, doi:10.3762/bjnano.14.88

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2023

Spatial mapping of photovoltage and light-induced displacement of on-chip coupled piezo/photodiodes by Kelvin probe force microscopy under modulated illumination

  • Zeinab Eftekhari,
  • Nasim Rezaei,
  • Hidde Stokkel,
  • Jian-Yao Zheng,
  • Andrea Cerreta,
  • Ilka Hermes,
  • Minh Nguyen,
  • Guus Rijnders and
  • Rebecca Saive

Beilstein J. Nanotechnol. 2023, 14, 1059–1067, doi:10.3762/bjnano.14.87

Graphical Abstract
  • of the light-driven piezo/photodiode device over time. Employing modulated illumination enabled us to quantify precisely the device displacement due to improved signal-to-noise ratio, which could not be achieved by continuous illumination. The configuration of the hybrid piezo/photodiode device has
  • center is around 3 to 4.6 nm/V, showing notable performance of the piezo-photodiode device under low photovoltage. The strength of our approach lies in its capability to decouple the contributions of different aspects of our hybrid system effectively, as the optoelectronic and mechanical properties are
PDF
Album
Supp Info
Full Research Paper
Published 06 Nov 2023

Nanoarchitectonics of photothermal materials to enhance the sensitivity of lateral flow assays

  • Elangovan Sarathkumar,
  • Rajasekharan S. Anjana and
  • Ramapurath S. Jayasree

Beilstein J. Nanotechnol. 2023, 14, 988–1003, doi:10.3762/bjnano.14.82

Graphical Abstract
  • ]. NIR light irradiation for 10 min can yield temperatures up to 61 °C in mesoporous PDA with a photoconversion efficiency of 26.7%. Despite the advantages, many of the polymer nanoparticles show strong photoluminescence and do not withstand long-term light irradiation. To overcome this challenge, hybrid
  • has advantages such as high NIR absorption, large surface area, and biocompatibility. Also, it is known to enhance the signal intensity in SERS, albeit less efficiently than gold nanoparticles [82][83]. However, graphene can be used for photothermal applications. Using a hybrid formulation of gold and
PDF
Album
Review
Published 04 Oct 2023

A graphene quantum dots–glassy carbon electrode-based electrochemical sensor for monitoring malathion

  • Sanju Tanwar,
  • Aditi Sharma and
  • Dhirendra Mathur

Beilstein J. Nanotechnol. 2023, 14, 701–710, doi:10.3762/bjnano.14.56

Graphical Abstract
  • dots and 3D bismuth oxyiodine hybrid hollow microspheres for the detection of chlopyrifos [26]. In 2020, Jiménez-López et al. worked on a fluorescent probe containing graphene quantum dots and silver nanoparticles for glyphosate detection [27]. In 2021, Xu Dan et al. developed a histidine
  • -functionalized nickel/silver/graphene quantum dot/graphene hybrid for the colorimetric detection of malathion [28]. This paper describes the development of an electrochemical sensor based on a graphene quantum dot-modified glassy carbon electrode (GQDs/GCE) for the determination and quantification of the
PDF
Album
Full Research Paper
Published 09 Jun 2023

Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review

  • Akeem Adeyemi Oladipo,
  • Saba Derakhshan Oskouei and
  • Mustafa Gazi

Beilstein J. Nanotechnol. 2023, 14, 631–673, doi:10.3762/bjnano.14.52

Graphical Abstract
  • it has a high anti-interference ability. It is important to note that a number of MOF-based materials have been used as opto-electrochemical sensors for the dual detection of hormones and antibiotics using hybrid optical and electrochemical methods. As two non-interfering and mutually independent
  • that MOFs exhibit not just fluorescence but also phosphorescence and scintillation has drawn attention to their optical capabilities for some time. Due to their hybrid composition, MOF materials are capable of a variety of emission phenomena (Figure 12) that are uncommon in other material classes. For
PDF
Album
Review
Published 01 Jun 2023

ZnO-decorated SiC@C hybrids with strong electromagnetic absorption

  • Liqun Duan,
  • Zhiqian Yang,
  • Yilu Xia,
  • Xiaoqing Dai,
  • Jian’an Wu and
  • Minqian Sun

Beilstein J. Nanotechnol. 2023, 14, 565–573, doi:10.3762/bjnano.14.47

Graphical Abstract
  • samples is simulated based on the transmission line theory (Figure 4). The reflection loss of the hybrid/wax mixtures as a function of the frequency is determined from Z0 and Zin according to the following equation: where Z0 and Zin are the impedance of free space and the input impedance, respectively
  • , indicating that the conductivity loss through the carbon shell plays a dominant role in the EM dissipation. Based on the above analysis, it is considered that multiple loss mechanisms may contribute to the improvement of EM absorption for the as-prepared SiC@C-ZnO hybrids (Figure 7). First, the hybrid
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2023

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • present protocols. Keywords: biohybrids; cell immobilization; encapsulation; microorganism entrapment; silicates; Introduction Bio-inorganic hybrid nanomaterials with highly specific functionalities can be prepared following Nature’s design approaches [1]. A wide range of materials resulting from the
  • various issues regarding the replacement of toxic precursor components and by-products by non-toxic substances in order to improve viability and/or growth of the entrapped cells. In fact, new organic, inorganic, and hybrid materials for cell entrapment need to be optimised regarding characteristics such
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

Conjugated photothermal materials and structure design for solar steam generation

  • Chia-Yang Lin and
  • Tsuyoshi Michinobu

Beilstein J. Nanotechnol. 2023, 14, 454–466, doi:10.3762/bjnano.14.36

Graphical Abstract
  • hydrophilic/hydrophobic properties. Furthermore, conjugated hybrid materials exhibit excellent performance because of the synergistic effects of different components of the hybrid materials. The overall structural design concept of the absorbers was also described. The Janus structure reduces the heat loss to
PDF
Album
Review
Published 04 Apr 2023

Molecular nanoarchitectonics: unification of nanotechnology and molecular/materials science

  • Katsuhiko Ariga

Beilstein J. Nanotechnol. 2023, 14, 434–453, doi:10.3762/bjnano.14.35

Graphical Abstract
  • cove-shaped two-dimensional graphene nanoribbon networks by interconnecting one-dimensional self-assembled graphene nanoribbons on a Au(111) surface [121]. The structure of the two-dimensional graphene nanoribbon network consists of hybrid junctions of graphene nanoribbons of various widths, exhibiting
PDF
Album
Review
Published 03 Apr 2023

Evaluation of electrosynthesized reduced graphene oxide–Ni/Fe/Co-based (oxy)hydroxide catalysts towards the oxygen evolution reaction

  • Karolina Cysewska,
  • Marcin Łapiński,
  • Marcin Zając,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2023, 14, 420–433, doi:10.3762/bjnano.14.34

Graphical Abstract
  • friendly nature [11]. Even though transition-metal-based catalysts still suffer from low surface areas [12], dissolution and aggregation of metallic phase and metal oxides during the active OER process occurs [13]. Hence, Ni-, Fe- and/or Co-based catalysts have been synthesized as hybrid catalysts with
  • graphene material with Ni-, Fe- and/or Co-based oxides/hydroxides with high chemical reactivity provides both an effective electron pathway through the catalyst [20] and high specific surface area [21], which is desirable for the OER process [13]. The overall electrocatalytic performance of the hybrid
  • electrode can also be improved by choosing a conductive and/or high surface area substrate, such as porous nickel foam [22][23]. In the literature, some research has been performed to evaluate the OER electrocatalytic performance of hybrid materials of Ni-, Fe- and/or Co-based oxides/(oxy)hydroxides and Gr
PDF
Album
Supp Info
Full Research Paper
Published 29 Mar 2023

Plasmonic nanotechnology for photothermal applications – an evaluation

  • A. R. Indhu,
  • L. Keerthana and
  • Gnanaprakash Dharmalingam

Beilstein J. Nanotechnol. 2023, 14, 380–419, doi:10.3762/bjnano.14.33

Graphical Abstract
PDF
Album
Review
Published 27 Mar 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • unique properties, low cost, and low cytotoxicity [37][38][39]. Hybrid structures containing silver played an important role in the development of strong antibacterial agents and do not cause drug resistance problems due to their broad-spectrum antibacterial action [40]. These features led to a wide
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Polymer nanoparticles from low-energy nanoemulsions for biomedical applications

  • Santiago Grijalvo and
  • Carlos Rodriguez-Abreu

Beilstein J. Nanotechnol. 2023, 14, 339–350, doi:10.3762/bjnano.14.29

Graphical Abstract
  • hydrodynamic droplet diameter of ca. 230 nm for Kolliphor® EL and ca. 125 nm for Polysorbate 80, whereas the size of the resulting hybrid nanoparticles was ca. 40 and 20 nm, respectively, as determined from TEM. The magnetic loading reached up to ca. 20 wt %, and therefore the hybrids could be useful for
PDF
Album
Review
Published 13 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • , nanometre-sized photocatalysts based on bismuth have recently been investigated and evaluated, because the majority of bismuth-based photocatalysts have a bandgap below 3.0 eV, making them usable in visible light. Additionally, their electrical structure produces a valence band with hybrid O 2p and Bi 6s
PDF
Album
Review
Published 03 Mar 2023

Recent progress in cancer cell membrane-based nanoparticles for biomedical applications

  • Qixiong Lin,
  • Yueyou Peng,
  • Yanyan Wen,
  • Xiaoqiong Li,
  • Donglian Du,
  • Weibin Dai,
  • Wei Tian and
  • Yanfeng Meng

Beilstein J. Nanotechnol. 2023, 14, 262–279, doi:10.3762/bjnano.14.24

Graphical Abstract
  • accumulation in the tumor tissue (Figure 7E,F) [83]. 5.2 Photoacoustic imaging Ultrasonography is a common noninvasive clinical real-time imaging technique of with low cost, and ease of operation. Based on the photoacoustic (PA) effect, a hybrid imaging modality of PA imaging has been derived, which has shown
PDF
Album
Review
Published 27 Feb 2023

Nanotechnology – a robust tool for fighting the challenges of drug resistance in non-small cell lung cancer

  • Filip Gorachinov,
  • Fatima Mraiche,
  • Diala Alhaj Moustafa,
  • Ola Hishari,
  • Yomna Ismail,
  • Jensa Joseph,
  • Maja Simonoska Crcarevska,
  • Marija Glavas Dodov,
  • Nikola Geskovski and
  • Katerina Goracinova

Beilstein J. Nanotechnol. 2023, 14, 240–261, doi:10.3762/bjnano.14.23

Graphical Abstract
  • copolymer core–shell NPs, (ii) polymer–polypeptide hybrid core–shell NPs, and (iii) polymer–lipid hybrid core–shell NPs additionally decorated with ligands for overexpressed receptors on cancer cells [92]. Traditionally selected overexpressed cancer cell surface markers for the active targeting of NPs
  • erlotinib, coated with a phospholipid layer, with anchors composed of hyaluronic acid–adipic acid hydralazide–poly(ethylene glycol) (HA-ADH-PEG). Hyaluronic acid-decorated lipid polymer hybrid nanoparticles (LPH NPs) specifically target overexpressed CD44 at the NSCLC cells. In the acidic tumor environment
  • demonstrate specific homologous targeting to cancer cells [131]. In addition, hybrid cell membrane biomimetic shells composed of fused red blood cell membrane and homotypic cancer membrane materials may significantly contribute to personalized nanomedicine design for targeting various tumors [132]. One
PDF
Album
Review
Published 22 Feb 2023

Spin dynamics in superconductor/ferromagnetic insulator hybrid structures with precessing magnetization

  • Yaroslav V. Turkin and
  • Nataliya Pugach

Beilstein J. Nanotechnol. 2023, 14, 233–239, doi:10.3762/bjnano.14.22

Graphical Abstract
  • film S that is in contact with a ferromagnetic insulator layer FI. Spin current and induced magnetization are calculated not only at the interface of the S/FI hybrid structure, but also inside the superconducting film. The new and interesting predicted effect is the frequency dependence of the induced
  • ; Introduction Creation and manipulation of spin flows in superconducting hybrid systems have become a very active research area during the last decade because of the possibility to create spin supercurrents with much larger relaxation lengths and spin lifetimes [1]. The creation of persistent spin currents in
  • ways of spin current injection into a superconductor, for example, the spin Hall effect [5], the spin Seebek effect [6], and ferromagnetic resonance spin pumping [7][8]. The spin pumping technique in hybrid structures consisting of a ferromagnetic insulator and a superconductor is considered to be the
PDF
Album
Full Research Paper
Published 21 Feb 2023

Cyclodextrins as eminent constituents in nanoarchitectonics for drug delivery systems

  • Makoto Komiyama

Beilstein J. Nanotechnol. 2023, 14, 218–232, doi:10.3762/bjnano.14.21

Graphical Abstract
  • with adamantane and bound to these nanoparticles through non-covalent host–guest interactions between β-CyD and adamantane. When the composite entered human cells, the RNA/DNA hybrid was digested by ribonuclease H (an intracellular ribonuclease that hydrolyzes the RNA in the RNA/DNA heteroduplex) to
  • influenza hemagglutinin peptide HA (for endosomal escape) by inclusion complex formation of β-CyD with adamantane. In human cells, the RNA/DNA hybrid was digested by intracellular ribonuclease H to release the antisense DNA. Furthermore, the linker is divided into three portions through the cleavage of two
PDF
Album
Review
Published 09 Feb 2023

Intermodal coupling spectroscopy of mechanical modes in microcantilevers

  • Ioan Ignat,
  • Bernhard Schuster,
  • Jonas Hafner,
  • MinHee Kwon,
  • Daniel Platz and
  • Ulrich Schmid

Beilstein J. Nanotechnol. 2023, 14, 123–132, doi:10.3762/bjnano.14.13

Graphical Abstract
  • multitonal responses, from which the force is reconstructed. In this paper, we are building towards a hybrid multifrequency approach different from the ones described above. The on-resonance measurement would follow frequency-modulated AFM or bimodal AFM while being assisted by a new off-resonance excitation
PDF
Album
Full Research Paper
Published 19 Jan 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • been carried out on the coating of unaltered textile substrates with hybrid MNP-polymer films for antimicrobial applications. In a previous work [47][48], we presented an innovative one-pot, one-step photoinduced synthesis to generate silver and gold-polymer nanofilms on a glass substrate. The kinetic
PDF
Album
Full Research Paper
Published 12 Jan 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • Avenue F.D. Roosevelt, 1050 Brussels, Belgium Nano Hybrid BioInterfaces Lab (NHBIL), Department of Chemical Sciences, University of Catania, viale Andrea Doria, 6, 95125 Catania, Italy Materia Nova Research Center, 3 avenue Nicolas Copernic, 7000 Mons, Belgium 10.3762/bjnano.14.10 Abstract
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

Frontiers of nanoelectronics: intrinsic Josephson effect and prospects of superconducting spintronics

  • Anatolie S. Sidorenko,
  • Horst Hahn and
  • Vladimir Krasnov

Beilstein J. Nanotechnol. 2023, 14, 79–82, doi:10.3762/bjnano.14.9

Graphical Abstract
  • (ANN) is a recent important development. The main goal of this thematic issue is to highlight new research done in the field of hybrid nanostructures, including various elements using the Josephson effect and their applications in quantum electronics, spintronics, and high-frequency electronics. The
  • -electron bolometers, with photon NEP of 1.1 × 10−16 W/Hz(1/2), achieved by replacing one of two single superconductor–insulator–normal (SIN) tunnel junctions with a single superconductor–normal (SN) contact [21]. Proposing a new type of cold electron bolometers with traps and hybrid superconducting
  • interferometer as an adiabatic neural cell of a perceptron artificial neural network in the quantum regime (a hybrid system whose configuration is dynamically adjusted by a quantum co-processor) [23]. - In several articles of the volume, new phenomena are predicted and investigated for promising spintronics
PDF
Editorial
Published 10 Jan 2023

Cooper pair splitting controlled by a temperature gradient

  • Dmitry S. Golubev and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2023, 14, 61–67, doi:10.3762/bjnano.14.7

Graphical Abstract
  • for developing quantum communication technologies. One way to identify Cooper pair splitting is to analyze long-range cross correlations of fluctuating currents in three-terminal hybrid normal–superconducting–normal nanostructures. Here, we theoretically investigate non-trivial behavior of cross
  • -correlated non-local shot noise in the presence of a temperature gradient. We suggest that applying a temperature gradient may serve as an extra tool to control the phenomenon of Cooper pair splitting. Keywords: Cooper pair splitting; entanglement; quantum shot noise; superconducting hybrid nanostructures
  • reflection (CAR): A Cooper pair may split into two electrons [2] (see Figure 1a), thereby generating pairs of entangled electrons in different metallic electrodes [3]. This phenomenon and its effect on electron transport in normal metal–superconductor–normal metal (NSN) hybrid structures were intensively
PDF
Album
Full Research Paper
Published 09 Jan 2023
Other Beilstein-Institut Open Science Activities