Search results

Search for "impedance spectroscopy" in Full Text gives 104 result(s) in Beilstein Journal of Nanotechnology.

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • rate of 0.05 mV·s−1. Electrochemical impedance spectroscopy was carried out at a frequency range 10 mHz to 1 MHz with an AC amplitude of 10 mV. Both CV and EIS measurements were carried out on an electrochemical workstation (Ametek 1470E) Results and Discussion Figure 1a shows XRD spectra of Fe2O3/COOH
  • oxygen levels of less than 0.1 ppm. The assembled cells were kept at room temperature for 12 h before electrochemical performance test Electrochemical performance of the assembled cells were then tested by galvanostatic charge/discharge measurements, cyclic voltammetry (CV) and electrochemical impedance
  • spectroscopy (EIS). Charge/discharge tests of the assembled cells were carried out using a commercial battery test system (LAND model, CT2001A) at a constant current in the potential range of 0.01–3.00 V (vs Li/Li+). The cyclic voltammetry measurements were conducted in the same potential window at a scanning
PDF
Album
Full Research Paper
Published 17 Mar 2017

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing
  • investigated by impedance spectroscopy (IS) in the temperature range from 20 to 550 °C in air. The impedance spectroscopy measurements were performed with a Solatron system (Fra 1260 + dielectric interface 1294). Experimental parameters and data acquisitions were controlled with the FRA software. A frequency
  • electrical properties of TiO2/SnO2, impedance spectroscopy was applied. Figure 8 presents: a) the impedance spectra obtained at 400 °C as well as the electrical resistance as a function of the temperature for: b) 90 mol % SnO2/10 mol % TiO2 and c) 10 mol % SnO2/90 mol % TiO2. The impedance spectra (IS) in
PDF
Album
Full Research Paper
Published 12 Jan 2017

A novel electrochemical nanobiosensor for the ultrasensitive and specific detection of femtomolar-level gastric cancer biomarker miRNA-106a

  • Maryam Daneshpour,
  • Kobra Omidfar and
  • Hossein Ghanbarian

Beilstein J. Nanotechnol. 2016, 7, 2023–2036, doi:10.3762/bjnano.7.193

Graphical Abstract
  • miRNA were confirmed by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) methods. Differential pulse voltammetry (DPV) was used for quantitative evaluation of miR-106a via recording the reduction peak current of gold nanoparticles. The electrochemical signal had a linear
  • attractive targets for the construction of electrochemical nanobiosensors [8][21][28]. There are numerous studies on fabricating electrochemical nanobiosensors for the detection of label-free or labeled miRNA. Although biosensors based on electrochemical impedance spectroscopy (EIS) offered a label-free
PDF
Album
Supp Info
Full Research Paper
Published 19 Dec 2016

Layered composites of PEDOT/PSS/nanoparticles and PEDOT/PSS/phthalocyanines as electron mediators for sensors and biosensors

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Fernando Martín-Pedrosa,
  • José Antonio De Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2016, 7, 1948–1959, doi:10.3762/bjnano.7.186

Graphical Abstract
  • with PEDOT/PSS/LuPc2 electrodes where a strong decrease in the oxidation peak voltage was not observed [33]. The electrocatalytic properties of the layered composite PEDOT/PSS/EM electrodes were further investigated using electrochemical impedance spectroscopy (EIS). At −0.5 V, a RMS sine wave was
  • unbound enzyme and stored at 4 °C. Characterization of the sensors Scanning electron microscopy (SEM) (FEI, QUANTA 200F) was used to record the images of the electrode surfaces. A square resistance was measured using a four-point tester (HAAMEG, HM 8040-2). Electrochemical impedance spectroscopy (EIS
  • to 1.5 × 10−4 mol·L−1). Scan rate 0.1 V·s−1. Square resistance (Rsq) and conductivity (ρ) of the PEDOT/PSS and PEDOT/PSS/EM electrodes. Results obtained from the impedance spectroscopy measurements. Relationship between scan rate in sensors immersed in catechol 10−3 mol·L−1 calculated in the cathodic
PDF
Album
Full Research Paper
Published 08 Dec 2016

Reconstitution of the membrane protein OmpF into biomimetic block copolymer–phospholipid hybrid membranes

  • Matthias Bieligmeyer,
  • Franjo Artukovic,
  • Stephan Nussberger,
  • Thomas Hirth,
  • Thomas Schiestel and
  • Michaela Müller

Beilstein J. Nanotechnol. 2016, 7, 881–892, doi:10.3762/bjnano.7.80

Graphical Abstract
  • molecular weight of the block copolymers. At low voltages, the channel conductance of OmpF in 1 M KCl was around 2.3 nS. In line with these experiments, integration of OmpF was also revealed by impedance spectroscopy. Our results indicate that blending synthetic polymer membranes with phospholipids allows
  • to retain the polymeric character of the membranes, the amount of lipid used was limited to 10 mol %. Eventually, membranes were analyzed using confocal laser scanning microscopy, voltage clamp measurements and impedance spectroscopy. Results and Discussion Block copolymer synthesis Poly(1,4-isoprene
  • ). Pure DPhPC vesicles prepared under similar conditions were significantly smaller than those composed of PIPEO and DPhPC (Figure 2B). They revealed completely different morphologies than the lipopolymersomes. Using impedance spectroscopy, we attempted to gain insight into the electrical properties of
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2016

Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

  • Amanda García-García,
  • Ricardo Vergaz,
  • José F. Algorri,
  • Gianluigi Zito,
  • Teresa Cacace,
  • Antigone Marino,
  • José M. Otón and
  • Morten A. Geday

Beilstein J. Nanotechnol. 2016, 7, 825–833, doi:10.3762/bjnano.7.74

Graphical Abstract
  • orientation of the liquid crystal molecules. Moreover, impedance spectroscopy suggests a nonnegligible anchoring force between the CNTs and the liquid crystal molecules. Keywords: Anchoring; carbon nanotubes; impedance; liquid crystal; negative anisotropy; Raman spectroscopy; reorientation; single-wall CNTs
PDF
Album
Full Research Paper
Published 08 Jun 2016

Gold nanoparticles covalently assembled onto vesicle structures as possible biosensing platform

  • M. Fátima Barroso,
  • M. Alejandra Luna,
  • Juan S. Flores Tabares,
  • Cristina Delerue-Matos,
  • N. Mariano Correa,
  • Fernando Moyano and
  • Patricia G. Molina

Beilstein J. Nanotechnol. 2016, 7, 655–663, doi:10.3762/bjnano.7.58

Graphical Abstract
  • electrochemical impedance spectroscopy or square wave voltammetry [22][23]. It is known that antibodies can be immobilized onto AuNPs without losing their biological properties [24][25]. Thus, the covalent immobilization of vesicles decorated with AuNPs on a gold surface could increase the amount of immobilized
PDF
Album
Full Research Paper
Published 02 May 2016

Mismatch detection in DNA monolayers by atomic force microscopy and electrochemical impedance spectroscopy

  • Maryse D. Nkoua Ngavouka,
  • Pietro Capaldo,
  • Elena Ambrosetti,
  • Giacinto Scoles,
  • Loredana Casalis and
  • Pietro Parisse

Beilstein J. Nanotechnol. 2016, 7, 220–227, doi:10.3762/bjnano.7.20

Graphical Abstract
  • mismatches. The second strategy exploits the change in capacitance at the interface between an ssDNA-functionalized gold electrode and the solution due to the hybridization process in a miniaturized electrochemical cell. Through electrochemical impedance spectroscopy measurements on extended ssDNA self
  • microRNAs or in genomic DNA. Keywords: atomic force microscopy; DNA monolayers; electrochemical impedance spectroscopy; hybridization; mismatches; Introduction Most current technologies for genotyping and sequencing are based on DNA hybridization, exploiting the high grade of selectivity due to the unique
  • cell. In a previous work we demonstrated the ability to follow the hybridization of perfectly matched sequences in real time through electrochemical impedance spectroscopy (EIS) measurements on extended ssDNA self-assembled monolayers (SAMs) [27]. Here we successfully tested EIS for the detection of
PDF
Album
Supp Info
Full Research Paper
Published 09 Feb 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Charge injection and transport properties of an organic light-emitting diode

  • Peter Juhasz,
  • Juraj Nevrela,
  • Michal Micjan,
  • Miroslav Novota,
  • Jan Uhrik,
  • Lubica Stuchlikova,
  • Jan Jakabovic,
  • Ladislav Harmatha and
  • Martin Weis

Beilstein J. Nanotechnol. 2016, 7, 47–52, doi:10.3762/bjnano.7.5

Graphical Abstract
  • investigated by steady-state current–voltage technique and impedance spectroscopy at various temperatures to obtain activation energies of charge injection and transport processes. Good agreement of activation energies obtained by steady-state and frequency-domain was used to analyze their contributions to the
  • identification of major bottleneck of charge injection and transport. Keywords: activation energy; impedance spectroscopy; organic light-emitting device; Introduction Since the discovery of organic electroluminescent (EL) materials such as tris(8-hydroxyquinolinato)aluminum(III) (Alq3), organic light-emitting
  • steady-state current density–voltage characteristics [5][6], or measurement in time- or frequency-domain, such as transient currents [7] and impedance spectroscopy [8][9]. Furthermore, the measurements can be extended by the temperature dependence of electrical properties which reveal the thermally
PDF
Album
Full Research Paper
Published 14 Jan 2016

A single-source precursor route to anisotropic halogen-doped zinc oxide particles as a promising candidate for new transparent conducting oxide materials

  • Daniela Lehr,
  • Markus R. Wagner,
  • Johanna Flock,
  • Julian S. Reparaz,
  • Clivia M. Sotomayor Torres,
  • Alexander Klaiber,
  • Thomas Dekorsy and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2015, 6, 2161–2172, doi:10.3762/bjnano.6.222

Graphical Abstract
  • longitudinal optical phonon–plasmon coupling and describes the interaction of collective oscillating free carriers (plasmons) with LO phonons [80]. Consequently, the concentration of free carriers increases with Cl doping. The dielectric properties of thin ZnO1−xClx pellets were investigated with impedance
  • spectroscopy. In the Nyquist plot in Figure 6 the imaginary part of the impedance is plotted as a function of the real part. For materials having resistive and capacitive components a series of two semicircles usually occurs in the Nyquist plot. The semicircle in the high frequency region is assigned to grain
PDF
Album
Supp Info
Correction
Full Research Paper
Published 18 Nov 2015

Electrochemical behavior of polypyrrol/AuNP composites deposited by different electrochemical methods: sensing properties towards catechol

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Cristina Medina-Plaza,
  • Fernando Martín-Pedrosa,
  • Yolanda Blanco,
  • José Antonio de Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2015, 6, 2052–2061, doi:10.3762/bjnano.6.209

Graphical Abstract
  • incorporated in the Ppy films was higher when using CP than that when using CA. In turn, using cogeneration, the amount of nanoparticles incorporated was higher than using trapping. Electrochemical impedance spectroscopy Electrochemical impedance spectroscopy (EIS) can provide information about the
  • . Electrochemical impedance spectroscopy (EIS) characterization EIS was performed in a 0.1 mol/L KCl solution with a frequency range from 105 to 0.1 Hz and a signal amplitude of 10 mV, at a working potential of 0.0 V. Tests of the voltammetric sensors The Ppy and Ppy/AuNPs films were used as working electrodes in
PDF
Album
Full Research Paper
Published 21 Oct 2015

Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles

  • Wicem Argoubi,
  • Maroua Saadaoui,
  • Sami Ben Aoun and
  • Noureddine Raouafi

Beilstein J. Nanotechnol. 2015, 6, 1840–1852, doi:10.3762/bjnano.6.187

Graphical Abstract
  • and concentration of the ferrocene derivatives have been studied using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). Selectivity and specificity tests have been also performed in the presence of potentially interfering substances to
  • competitive proteins using a panel of electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). Application of the two platforms for the detection of hIgG and H2O2 respectively in human serum and in honey are presented
  • is ideal to obtain a nanostructured surface with high density of well-dispersed nanoparticles and a surface of about 7.8 × 10−3 cm2 corresponding to a 1 mm diameter bulk gold electrode. Study by electrochemical impedance spectroscopy Gold is a more conductive material than carbon, so the
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2015

Surface engineering of nanoporous substrate for solid oxide fuel cells with atomic layer-deposited electrolyte

  • Sanghoon Ji,
  • Waqas Hassan Tanveer,
  • Wonjong Yu,
  • Sungmin Kang,
  • Gu Young Cho,
  • Sung Han Kim,
  • Jihwan An and
  • Suk Won Cha

Beilstein J. Nanotechnol. 2015, 6, 1805–1810, doi:10.3762/bjnano.6.184

Graphical Abstract
  • via impedance spectroscopy To investigate the effects of BEC thickness on the individual resistances, electrochemical impedance spectroscopy (EIS) data were obtained for the Cell-A and Cell-B. Before comparing the EIS data for two kinds of cells, the EIS curves obtained under different direct current
  • (left side) and 320 (right side) nm-thick BECs; (B) transmission electron microscopic image for 80 nm pore AAO supported 320 nm-thick BEC. Tafel plots, measured at 500 °C, for the Cell-A and Cell-B. Electrochemical impedance spectroscopy analysis results, measured at 500 °C, at bias voltage of 0.1 V for
PDF
Album
Full Research Paper
Published 27 Aug 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
PDF
Album
Review
Published 23 Apr 2015

Electrical response of liquid crystal cells doped with multi-walled carbon nanotubes

  • Amanda García-García,
  • Ricardo Vergaz,
  • José F. Algorri,
  • Xabier Quintana and
  • José M. Otón

Beilstein J. Nanotechnol. 2015, 6, 396–403, doi:10.3762/bjnano.6.39

Graphical Abstract
  • significant depending on the degree of reorientation of the MWCNTs. The impedance behavior of MWCNT-doped and undoped LC cells has been studied by impedance spectroscopy. The results are shown in Cole–Cole plots of the imaginary (Z″) versus the real part (Z′) of the impedance. In these plots, also known as
  • efficient aligning surface, PEDOT:PSS has a remarkably higher conductivity than polyimide, what is essential to keep electric continuity across the layer. Characterization method: driving waveform Impedance spectroscopy customarily employs sufficiently small voltage signals so that the system response is
PDF
Album
Full Research Paper
Published 06 Feb 2015

Kelvin probe force microscopy in liquid using electrochemical force microscopy

  • Liam Collins,
  • Stephen Jesse,
  • Jason I. Kilpatrick,
  • Alexander Tselev,
  • M. Baris Okatan,
  • Sergei V. Kalinin and
  • Brian J. Rodriguez

Beilstein J. Nanotechnol. 2015, 6, 201–214, doi:10.3762/bjnano.6.19

Graphical Abstract
  • electronic charge and z is the ion valence. At low biases (Vdc < kT/e ≈ 25 mV) and in the absence of Faradaic reactions, this RC time is the relevant timescale of the transient response, e.g., in high-frequency impedance spectroscopy experiments or induced charge electrokinetics, where high-frequency
PDF
Album
Supp Info
Full Research Paper
Published 19 Jan 2015

Mammalian cell growth on gold nanoparticle-decorated substrates is influenced by the nanoparticle coating

  • Christina Rosman,
  • Sebastien Pierrat,
  • Marco Tarantola,
  • David Schneider,
  • Eva Sunnick,
  • Andreas Janshoff and
  • Carsten Sönnichsen

Beilstein J. Nanotechnol. 2014, 5, 2479–2488, doi:10.3762/bjnano.5.257

Graphical Abstract
  • polymer induced a reduction by 30% and 40%, respectively, which is absent for the carboxy-terminated polymer. Furthermore, interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS) was employed in order to investigate the micromotility of cells added to substrates
  • properties of the coating agent and its reactive group. The impact on surfactant-induced cell behavior was investigated in more detail by interface-sensitive impedance spectroscopy (electric cell–substrate impedance sensing, ECIS). Studies on the uptake and influence on metabolic activity with respect to
PDF
Album
Supp Info
Full Research Paper
Published 24 Dec 2014

Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

  • Vinay Kabra,
  • Lubna Aamir and
  • M. M. Malik

Beilstein J. Nanotechnol. 2014, 5, 2216–2221, doi:10.3762/bjnano.5.230

Graphical Abstract
  • Equations 4–6 [9][10] as follows: where Vbi is the built-in voltage, Xn and Xp are the depletion width for the n- and p-side, and εn and εp are the dielectric constants of n-Si and p-ZnO, respectively. The dielectric constants εp and εn were found to be 7 and 11.7, respectively, as derived from impedance
  • spectroscopy [9][10]. The depletion width on the n-side is found to be shorter than on the p-side because the carrier concentration of n-Si is higher than p-ZnO, which is supported by the Hall effect results. The calculated values of these various diode parameters using Equations 4–6 are listed in Table 1
PDF
Album
Full Research Paper
Published 24 Nov 2014

Growth and structural discrimination of cortical neurons on randomly oriented and vertically aligned dense carbon nanotube networks

  • Christoph Nick,
  • Sandeep Yadav,
  • Ravi Joshi,
  • Christiane Thielemann and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2014, 5, 1575–1579, doi:10.3762/bjnano.5.169

Graphical Abstract
  • stimulate neural activity. CNTs do have a high capacity and low impedance, e.g., compared to IrO2 which is widely used as electrical interface for cells, as has been manifested by cyclic voltammetry and impedance spectroscopy [9]. Thus CNTs allow to minimise the stimulation voltage as well as the electrode
PDF
Album
Supp Info
Video
Full Research Paper
Published 17 Sep 2014

Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes

  • Jung-Ho Yun,
  • Il Ku Kim,
  • Yun Hau Ng,
  • Lianzhou Wang and
  • Rose Amal

Beilstein J. Nanotechnol. 2014, 5, 895–902, doi:10.3762/bjnano.5.102

Graphical Abstract
  • parameters of the DSSCs, electrochemical impedance spectroscopy (EIS) offers valuable information. Figure 4 shows the Bode phase plots and the Nyquist plots obtained from electron transfer at the TiO2 and electrolyte interface under a solar simulator of AM 1.5. Figure 4a shows the negative shift of the
  • for about 40 min. The absorbance measurement was performed using UV–vis spectrophotometer (Cary 300, Varian). The electrochemical impedance spectroscopy (EIS) measurements were performed by illuminating the DSSCs with a AM 1.5 solar simulator calibrated at 100 mW·cm−2 at open-circuit conditions
PDF
Album
Full Research Paper
Published 24 Jun 2014

Enhancement of photocatalytic H2 evolution of eosin Y-sensitized reduced graphene oxide through a simple photoreaction

  • Weiying Zhang,
  • Yuexiang Li,
  • Shaoqin Peng and
  • Xiang Cai

Beilstein J. Nanotechnol. 2014, 5, 801–811, doi:10.3762/bjnano.5.92

Graphical Abstract
  • photoreaction. This further indicates the restoration of the sp2 π-conjugated network for RGO after the photoreaction. Due to restoration of the sp2 π-conjugated network in RGOx, its conductivity is expected to increase [42]. To verify this enhancement, the electrochemical impedance spectroscopy (EIS) of GO
  • -resolution TEM (HRTEM) images were taken on a JEOL JEM-2010 (TEM) equipped with an energy dispersive spectrometer (EDS). Electrochemical impedance spectroscopy (EIS) was measured on an IVIUMSTAT electrochemical workstation (Netherlands). The electrochemical experiments were performed in a 3-compartment cell
PDF
Album
Full Research Paper
Published 06 Jun 2014

Electrochemical and electron microscopic characterization of Super-P based cathodes for Li–O2 batteries

  • Mario Marinaro,
  • Santhana K. Eswara Moorthy,
  • Jörg Bernhard,
  • Ludwig Jörissen,
  • Margret Wohlfahrt-Mehrens and
  • Ute Kaiser

Beilstein J. Nanotechnol. 2013, 4, 665–670, doi:10.3762/bjnano.4.74

Graphical Abstract
  • (trifluoromethane)sulfonimide lithium salt (LiTFSI)/tetraglyme electrolyte were investigated by galvanostatic cycling and electrochemical impedance spectroscopy measurements. Ex-situ X-ray diffraction and scanning electron microscopy were used to evaluate the formation/dissolution of Li2O2 particles at the cathode
  • side during the operation of Li–O2 cells. Keywords: aprotic electrolyte; impedance spectroscopy; Li–O2 batteries; scanning electron microscopy; Introduction The development of new types of electrochemical power sources is nowadays considered a key factor for further development of hybrid and fully
  • electrolyte. The electrochemical behaviors of the batteries were investigated by galvanostatic cycling and electrochemical impedance spectroscopy. The physico–chemical investigation of the lithium-oxide phases that form and dissolve at the cathode side upon discharge and charge of Li–O2 batteries has been
PDF
Album
Full Research Paper
Published 18 Oct 2013

Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications

  • Mikhail S. Kondratenko,
  • Igor I. Ponomarev,
  • Marat O. Gallyamov,
  • Dmitry Y. Razorenov,
  • Yulia A. Volkova,
  • Elena P. Kharitonova and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 481–492, doi:10.3762/bjnano.4.57

Graphical Abstract
  • were examined by means of SAXS, thermomechanical analysis (TMA), and were tested in operating fuel cells by means of stationary voltammetry and impedance spectroscopy. The new membranes showed excellent stability in a 2000-hour fuel cell (FC) durability test. The modification of the PBI-O-PhT films
  • reduced conductivity due to an excessively high degree of crosslinking. Keywords: composite; high temperature polymer-electrolyte fuel cells (HT-PEFC); impedance spectroscopy; polybenzimidazole (PBI); zirconium; Introduction Polymer-electrolyte fuel cells (PEFC) based on polybenzimidazole (PBI
  • the membranes is also confirmed by the double-layer capacitance data presented in Figure 12. The capacitance values, which can be measured by means of impedance spectroscopy, depend on the boundary area between the proton- (PA) and electron- (Pt and carbon support) conducting phases and serve as a
PDF
Album
Full Research Paper
Published 21 Aug 2013

Zeolites as nanoporous, gas-sensitive materials for in situ monitoring of DeNOx-SCR

  • Thomas Simons and
  • Ulrich Simon

Beilstein J. Nanotechnol. 2012, 3, 667–673, doi:10.3762/bjnano.3.76

Graphical Abstract
  • sensor at the same time. By means of temperature-dependent impedance spectroscopy we found that the thermally induced NH3 desorption in H-form and in Fe-loaded zeolite H-ZSM-5 follow the same process, while a remarkable difference under DeNOx-SCR reaction conditions was found. The Fe-loaded catalyst
  • elementary catalytic process promoting a full description of the NH3-SCR reaction system. Keywords: DeNOx-SCR; gas sensing; in situ; impedance spectroscopy; zeolite; Introduction Zeolites are crystalline, nanoporous aluminosilicates composed of [TO4] tetrahedra (T = Si, Al). In H-form zeolites protons
  • also applied in gas sensors [12][13][14][15][16][17]. They are proton conductors due to the mobility of the charge-compensating protons. By means of impedance spectroscopy (IS) [18][19][20][21] and quantum chemical calculations on H-ZSM-5 [22][23], we showed in previous works that protons can move
PDF
Album
Letter
Published 26 Sep 2012
Other Beilstein-Institut Open Science Activities