Search results

Search for "strain" in Full Text gives 394 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Nanoarchitectonics to entrap living cells in silica-based systems: encapsulations with yolk–shell and sepiolite nanomaterials

  • Celia Martín-Morales,
  • Jorge Fernández-Méndez,
  • Pilar Aranda and
  • Eduardo Ruiz-Hitzky

Beilstein J. Nanotechnol. 2023, 14, 522–534, doi:10.3762/bjnano.14.43

Graphical Abstract
  • brief description of the material aspect, while stability corresponds to the observed overall resistance of the material to mechanical strain. Biological viability focuses on the survival state of the encapsulated biological entities. Both yeast and cyanobacteria release gases as products of their
  • been used for yeast cultivation. Two different unicellular microorganisms have been used. The wild-type cyanobacteria Synechococcus elongatus PCC7942 was used as a representative model of phototrophic prokaryotic microorganisms, and a wild-type Saccharomyces cerevisiae strain was selected as a model of
  • heterotrophic eukaryotic microorganisms. The cyanobacterial strain has been obtained from stock cultures of a previous research project, developed in the summer of 2021 for the international Genetically Engineered Machine (iGEM) competition by MADRID_UCM 2021 iGEM team [43]. All procedures involving yeast cells
PDF
Album
Supp Info
Full Research Paper
Published 25 Apr 2023

On the use of Raman spectroscopy to characterize mass-produced graphene nanoplatelets

  • Keith R. Paton,
  • Konstantinos Despotelis,
  • Naresh Kumar,
  • Piers Turner and
  • Andrew J. Pollard

Beilstein J. Nanotechnol. 2023, 14, 509–521, doi:10.3762/bjnano.14.42

Graphical Abstract
  • . For example, information on flake size, extent of structural defects, chemical or electronic doping, and strain and layer number can all be extracted from one spectrum [13][14][15][16][17][18]. As such, Raman spectroscopy is widely used by producers to assess the quality of their material, in
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2023

Quercetin- and caffeic acid-functionalized chitosan-capped colloidal silver nanoparticles: one-pot synthesis, characterization, and anticancer and antibacterial activities

  • Akif Hakan Kurt,
  • Elif Berna Olutas,
  • Fatma Avcioglu,
  • Hamza Karakuş,
  • Mehmet Ali Sungur,
  • Cansu Kara Oztabag and
  • Muhammet Yıldırım

Beilstein J. Nanotechnol. 2023, 14, 362–376, doi:10.3762/bjnano.14.31

Graphical Abstract
  • standard bacterial strains, 5% sheep blood agar and eosin methylene blue (EMB) media were used. The inoculated plates were kept in an oven at 35 ± 2 °C for 18–24 h. Sterile Müller Hinton broth fluid tubes were prepared in 0.5 McFarland turbidity standard for each bacterial strain. The bacteria were
  • bacterial strain. Then the inoculated plates were kept in an oven at 35 ± 2 °C for 18–24 h. The diameters of the inhibition zones formed around the discs in the medium were measured with millimetric rulers. This process was repeated three times for each antibacterial solution. A statistically average value
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2023

Bismuth-based nanostructured photocatalysts for the remediation of antibiotics and organic dyes

  • Akeem Adeyemi Oladipo and
  • Faisal Suleiman Mustafa

Beilstein J. Nanotechnol. 2023, 14, 291–321, doi:10.3762/bjnano.14.26

Graphical Abstract
  • nitrogen conversion [61][63]. Antibiotics are persistent for long periods of time in natural environment. It is important to note that bacteria that develop resistance to one antibiotic also exhibit resistance to other drugs and chemicals. For example, Dickinson et al. [64] reported that the focal strain
  • lowering the cost of treatment. Aside from its magnetic and optical properties, BiFeO3 also exhibits piezoelectric characteristics, photovoltaic effects, switchable ferroelectric diode effects, and spontaneous polarisation enhancement. It is also sensitive to epitaxial strain [88]. Given its intriguing
  • photocatalysis over the past few years due to their distinct optical and electronic characteristics [42][88][106]. Simple strain relaxation and short diffusion paths are benefits of 1-D nanostructured materials and are advantageous for the separation of photogenerated carriers [102]. 1-D spindle-like BiVO4
PDF
Album
Review
Published 03 Mar 2023

Antimicrobial and mechanical properties of functionalized textile by nanoarchitectured photoinduced Ag@polymer coating

  • Jessica Plé,
  • Marine Dabert,
  • Helene Lecoq,
  • Sophie Hellé,
  • Lydie Ploux and
  • Lavinia Balan

Beilstein J. Nanotechnol. 2023, 14, 95–109, doi:10.3762/bjnano.14.11

Graphical Abstract
  • ] synthesized AgNPs on cotton fabrics using laser ablation, while Ahmad et al. [31] deposited AgNPs by the dip and dry method based on surface reduction reactions. However, the difference in expansion coefficients of the given metal layer and substrate can lead to surface defects under strain (cracks, loss of
  • cotton textile was used as a substrate. Microbial strains and culture methods Microbiological assays were conducted with a non-pathogenic, published bacteria strain, Escherichia coli (E. coli) SCC1 [62], and a yeast strain, Candida albicans (C. albicans) 1602m 280057, isolated from an infected patient
PDF
Album
Full Research Paper
Published 12 Jan 2023

Frequency-dependent nanomechanical profiling for medical diagnosis

  • Santiago D. Solares and
  • Alexander X. Cartagena-Rivera

Beilstein J. Nanotechnol. 2022, 13, 1483–1489, doi:10.3762/bjnano.13.122

Graphical Abstract
  • loss modulus [14][15][16][17]. These quantities are appropriate for characterizing soft viscoelastic materials, such as biological specimens, whose mechanical response depends on the rate of application of stress or strain. Notably, many measurements on complex biological systems are still reported
PDF
Album
Perspective
Published 09 Dec 2022

Bending and punching characteristics of aluminum sheets using the quasi-continuum method

  • Man-Ping Chang,
  • Shang-Jui Lin and
  • Te-Hua Fang

Beilstein J. Nanotechnol. 2022, 13, 1303–1315, doi:10.3762/bjnano.13.108

Graphical Abstract
  • strain distribution, and fracture strength were provided as well as the interfacial mechanics and punching characteristics of each nano-punching model. Model and Methodologies The simulation model of the nano-punching system comprises a punch and a single crystalline Al workpiece, as shown in Figure 1
  • were discussed under various conditions. The stress–displacement curve and stress/strain image were used to analyze various mechanical properties. Effect of crystal orientation on the nano-punching process Before discussing the influence of different crystal orientations on the nano-punching process
  • is more widely distributed than that of O2. When the punch displacement was d = 120 Å, all of the Al workpieces of the O1, O2, and O3 orientations were broken. Figure 6 shows the shear stress and strain distribution during the unloading process of the O1, O2, and O3 orientations. Because the cutting
PDF
Album
Full Research Paper
Published 10 Nov 2022

Enhanced electronic transport properties of Te roll-like nanostructures

  • E. R. Viana,
  • N. Cifuentes and
  • J. C. González

Beilstein J. Nanotechnol. 2022, 13, 1284–1291, doi:10.3762/bjnano.13.106

Graphical Abstract
  • a well-defined geometry with a uniform rectangular cross section along their entire length. This particular morphology makes them a strong candidate for providing a thorough understanding of dimensionally confined transport phenomena, as presented in SnO2 NBs. Moreover, strain-induced polarization
PDF
Album
Supp Info
Full Research Paper
Published 08 Nov 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • specificity and sensibility of ZIKV60 for NS1 may be an innovative tool for novel graphene-based biosensors for ZIKV NS1 protein detection. Experimental NS1 proteins Recombinant Zika virus (Uganda strain), dengue virus (serotypes 1, 2, 3, and 4) and yellow fever virus NS1 proteins expressed in mammalian
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Design and selection of peptides to block the SARS-CoV-2 receptor binding domain by molecular docking

  • Kendra Ramirez-Acosta,
  • Ivan A. Rosales-Fuerte,
  • J. Eduardo Perez-Sanchez,
  • Alfredo Nuñez-Rivera,
  • Josue Juarez and
  • Ruben D. Cadena-Nava

Beilstein J. Nanotechnol. 2022, 13, 699–711, doi:10.3762/bjnano.13.62

Graphical Abstract
  • . Interestingly, several peptides showed the capability to bind to the active surface area of the RBD of the Wuhan strain, as well as to the RBD of the Delta variant and other SARS-Cov-2 variants. Therefore, these peptides have promising potential in the treatment of the COVID-19 disease caused by different
  • association of the Wuhan strain RBD (GenBank: MN908947.3) with ACE2 [6]. The number of hydrogen bonds between RBD and ACE2 influence the stability of the bound complex, which suggests that designing peptides capable of forming several hydrogen bonds might prove useful for increasing the binding affinity [25
  • bonds in these positions while docked to SARS-CoV-2 RBD. The proposed sequences of amino acid residues were modeled using PEP-FOLD 3.5 server. Then, theoretical peptides were submitted to molecular docking against the Wuhan strain (PDB ID: 6VYB), Delta variant (PDB ID: 7W92) and theoretical variants
PDF
Album
Supp Info
Full Research Paper
Published 22 Jul 2022

Antibacterial activity of a berberine nanoformulation

  • Hue Thi Nguyen,
  • Tuyet Nhung Pham,
  • Anh-Tuan Le,
  • Nguyen Thanh Thuy,
  • Tran Quang Huy and
  • Thuy Thi Thu Nguyen

Beilstein J. Nanotechnol. 2022, 13, 641–652, doi:10.3762/bjnano.13.56

Graphical Abstract
  • activity of the pure BBR at saturation concentration and BBR NPs at different concentrations of 0.5 to 5.0 mg/mL was examined against two representative bacteria causing hospital-acquired infections including a Gram-positive strain (MRSA) and a Gram-negative strain (E. coli O157:H7) in vitro using the
  • based on the auto-fluorescence of BBR molecules, and also on the ultrastructural characteristics of the bacteria. 106 CFU/mL of MRSA strain was inoculated on nutrient agar for 24 h at 37 °C. After that, 1 mL of BBR NPs (2 mg/mL) solution was sprayed on the colonies of bacteria and incubated for 1 h at
PDF
Album
Supp Info
Full Research Paper
Published 11 Jul 2022

Fabrication and testing of polymer microneedles for transdermal drug delivery

  • Vahid Ebrahiminejad,
  • Zahra Faraji Rad,
  • Philip D. Prewett and
  • Graham J. Davies

Beilstein J. Nanotechnol. 2022, 13, 629–640, doi:10.3762/bjnano.13.55

Graphical Abstract
  • measurement of FPL and APE affect the fidelity and repeatability of results [21]. To mimic the in vivo conditions of the skin, some researchers pre-stretch the sample [27][28]. But the uncontrolled initial skin strain may yield different results for otherwise similar experiments. Shu et al. recently indicated
  • 1.5 to 3 m/s and an increase of 13.17% for an impact velocity increase from 3 to 4.5 m/s. It is worth noting that Crichton et al. [39] studied the effect of varying skin strain rates on MN insertion into a rabbit’s ear. At low strain rates (≈0, 0.56, and 1.22 m/s), the APE for their NanopatchTM was as
  • low as 25%; however, by increasing the strain rate to 5,300 s−1, at an insertion velocity of 1.96 m/s, an APE value of ≈95% was achieved. The work summarized here demonstrates the potential of high-fidelity and low-cost thermoplastic MN arrays for coated drug delivery. In addition, thermoplastic MN
PDF
Album
Full Research Paper
Published 08 Jul 2022

Effects of substrate stiffness on the viscoelasticity and migration of prostate cancer cells examined by atomic force microscopy

  • Xiaoqiong Tang,
  • Yan Zhang,
  • Jiangbing Mao,
  • Yuhua Wang,
  • Zhenghong Zhang,
  • Zhengchao Wang and
  • Hongqin Yang

Beilstein J. Nanotechnol. 2022, 13, 560–569, doi:10.3762/bjnano.13.47

Graphical Abstract
  • factors, but also provides a suitable mechanical environment for cells, including physical signals such as substrate stiffness, hydrostatic pressure, shear stress, strain, pressure, and tension [7][8][9]. These mechanical factors play an important role in regulating normal cellular physiological functions
PDF
Album
Supp Info
Full Research Paper
Published 28 Jun 2022

Tubular glassy carbon microneedles with fullerene-like tips for biomedical applications

  • Sharali Malik and
  • George E. Kostakis

Beilstein J. Nanotechnol. 2022, 13, 455–461, doi:10.3762/bjnano.13.38

Graphical Abstract
  • pyrolysis of methane on a curved alumina surface. The surface provides the catalyst as well as the “strain” required to direct nucleation and growth. Figure 1a is a scanning electron microscopy (SEM) overview image showing a number of glassy carbon microneedles, which grow in the direction of the gas flow
PDF
Album
Full Research Paper
Published 19 May 2022

Effect of sample treatment on the elastic modulus of locust cuticle obtained by nanoindentation

  • Chuchu Li,
  • Stanislav N. Gorb and
  • Hamed Rajabi

Beilstein J. Nanotechnol. 2022, 13, 404–410, doi:10.3762/bjnano.13.33

Graphical Abstract
  • , strain rate, harmonic displacement, and harmonic frequency were set as 2.0 μm, 0.05 s−1, 1.0 nm, and 75 Hz, respectively. The Poisson’s ratio of the tibia specimens was assumed to be 0.3 [14]. The allowable drift rate was set as 0.10 nm/s to minimize the effect of vibration and thermal drift during
PDF
Album
Full Research Paper
Published 22 Apr 2022

Effects of drug concentration and PLGA addition on the properties of electrospun ampicillin trihydrate-loaded PLA nanofibers

  • Tuğba Eren Böncü and
  • Nurten Ozdemir

Beilstein J. Nanotechnol. 2022, 13, 245–254, doi:10.3762/bjnano.13.19

Graphical Abstract
  • of the nanofibers were calculated from the strain–stress curves. Statistical analyses All data were expressed as mean ± SD. Statistical analyses were performed using SPSS 20.0 for Windows (SPSS, Chicago, IL). The significance was evaluated with one-way ANOVA followed by Tukey’s post hoc test (SPSS
PDF
Album
Full Research Paper
Published 21 Feb 2022

Relationship between corrosion and nanoscale friction on a metallic glass

  • Haoran Ma and
  • Roland Bennewitz

Beilstein J. Nanotechnol. 2022, 13, 236–244, doi:10.3762/bjnano.13.18

Graphical Abstract
  • decay with scanning at all loads. This friction decay was attributed to the consecutive plastic deformation and hardening of the Cu substrate during repeated scanning. Different from strain hardening in conventional metals, MGs show strain softening induced by the creation of additional free volume
  • during deformation [48][49]. No plastic strain occurs in this work, given the much higher yield strength of Zr-based MGs (approx. 1.7 GPa [50]) than that of copper (69–365 MPa [51]). The maximum contact pressure in this work is ca. 0.49 GPa (JKR model), smaller than the yield strength of MGs. As a
PDF
Album
Supp Info
Full Research Paper
Published 18 Feb 2022

Piezoelectric nanogenerator for bio-mechanical strain measurement

  • Zafar Javed,
  • Lybah Rafiq,
  • Muhammad Anwaar Nazeer,
  • Saqib Siddiqui,
  • Muhammad Babar Ramzan,
  • Muhammad Qamar Khan and
  • Muhammad Salman Naeem

Beilstein J. Nanotechnol. 2022, 13, 192–200, doi:10.3762/bjnano.13.14

Graphical Abstract
  • as well. Under high dynamic strain more output voltage is generated than under low dynamic strain. The maximum current density shown by the device is 172.5 nA/cm2. The developed piezoelectric nanofiber sensor was then integrated into a knitted fabric through stitching to be used for angle measurement
  • developed a resistive strain sensors for movement analysis. They integrated an electrically conductive elastomer into a fabric, which was then able to detect the posture and the movement of the human body. Retrieved data from these strain sensors were compared with conventional motion tracking systems. The
  • results show promising performance for body posture classification and reconstruction. Similarly, for measuring human body angles, piezoresistive sensors were developed and characterized under bending and stretching regarding the application as strain sensors [7]. Knitted piezoresistive fabrics were used
PDF
Album
Full Research Paper
Published 07 Feb 2022

Thermal oxidation process on Si(113)-(3 × 2) investigated using high-temperature scanning tunneling microscopy

  • Hiroya Tanaka,
  • Shinya Ohno,
  • Kazushi Miki and
  • Masatoshi Tanaka

Beilstein J. Nanotechnol. 2022, 13, 172–181, doi:10.3762/bjnano.13.12

Graphical Abstract
  • existence of a certain oxidation pattern indicates that the preferential adsorption site should be related to the strain induced by the pre-adsorbed oxygen atoms. In the case of Si(111), it has been shown that one oxygen atom at the backbond of a similar adatom site is the common first product for oxidation
  • ) [14]. This clearly indicates that the strain relief mechanism works effectively on Si(113). Second, the atomic model in the early oxidation stage has been elucidated based on high-resolution STM images, as shown in Figure 7. This should encourage further research to establish the structure model
  • image. There are several typical patterns for the bright protrusions, which can be explained by the strain-dependent adsorption preference of oxygen. (a) Filled-state STM image of Si(113)-(3 × 2). Image size: 30 × 30 nm2, Vs = −2.0 V, It = 0.05 nA. (b) Empty-state STM image of Si(113)-(3 × 2). Image
PDF
Album
Supp Info
Full Research Paper
Published 03 Feb 2022

Theoretical understanding of electronic and mechanical properties of 1T′ transition metal dichalcogenide crystals

  • Seyedeh Alieh Kazemi,
  • Sadegh Imani Yengejeh,
  • Vei Wang,
  • William Wen and
  • Yun Wang

Beilstein J. Nanotechnol. 2022, 13, 160–171, doi:10.3762/bjnano.13.11

Graphical Abstract
  • electronic optimization loop is set to 1 × 10−5 eV. To investigate the elastic constants of the TMDs according to the generalized Hooke’s law, the energies as a function of strain (ε) in the strain range −2.5% ≤ ε ≤ 2.5% with an increment of 0.5% are calculated. The elastic constants Cij are obtained by
  • fitting a second-order polynomial to the change on the total energy versus applied strain. The data are obtained from post-processing the VASP calculated results using the VASPKIT code [45]. The average values of G and B of bulk TMDs are obtained using the Voigt–Reuss–Hill average method [16]: The values
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • concentration of EDTA and the bacterial strain, there is a release of membrane components, proteins, and finally cell lysis [53][54][55]. The treatment of Gram-negative cells with EDTA can lead to a release of up to 50% of the LPS from the cell wall of a bacterium [56][57]. These effects have been demonstrated
  • series of experiments, the particles were cross-linked with glutaraldehyde before dissolution with EDTA. This corresponded to the actual HbMP production process (Figure 6 – sample B). Here it could be seen that after cross-linking with glutaraldehyde, no viable bacteria of either strain were detectable
PDF
Album
Full Research Paper
Published 24 Jan 2022

Effect of lubricants on the rotational transmission between solid-state gears

  • Huang-Hsiang Lin,
  • Jonathan Heinze,
  • Alexander Croy,
  • Rafael Gutiérrez and
  • Gianaurelio Cuniberti

Beilstein J. Nanotechnol. 2022, 13, 54–62, doi:10.3762/bjnano.13.3

Graphical Abstract
  • fluid. One obtains several fluid properties such as pressure, velocity, shear stress, density and strain rate. In the case of the gear–oil–gear system, several studies based on the CFD simulation have been reported [11][12][13][14][15][16][17][18]. However, most of the simulations for this type of
PDF
Album
Supp Info
Full Research Paper
Published 05 Jan 2022

Polarity in cuticular ridge development and insect attachment on leaf surfaces of Schismatoglottis calyptrata (Araceae)

  • Venkata A. Surapaneni,
  • Tobias Aust,
  • Thomas Speck and
  • Marc Thielen

Beilstein J. Nanotechnol. 2021, 12, 1326–1338, doi:10.3762/bjnano.12.98

Graphical Abstract
  • rolled) during growth and their interaction with the external environment. Mechanically, when the strain in the cuticle (induced by the simultaneous isotropic production of the cuticle and anisotropic expansion of the underlying cells) increases beyond a critical strain value, ridges start to develop [37
PDF
Album
Supp Info
Full Research Paper
Published 01 Dec 2021

Cantilever signature of tip detachment during contact resonance AFM

  • Devin Kalafut,
  • Ryan Wagner,
  • Maria Jose Cadena,
  • Anil Bajaj and
  • Arvind Raman

Beilstein J. Nanotechnol. 2021, 12, 1286–1296, doi:10.3762/bjnano.12.96

Graphical Abstract
  • Devin Kalafut Ryan Wagner Maria Jose Cadena Anil Bajaj Arvind Raman School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USA 10.3762/bjnano.12.96 Abstract Contact resonance atomic force microscopy, piezoresponse force microscopy, and electrochemical strain microscopy are
  • microscopy (PFM) [3], and electrochemical strain microscopy (ESM) [4] are atomic force microscopy (AFM) [5] methods where the probe tip is held in contact with the sample at a constant average force while a small superimposed vibrational response is monitored. CR-AFM can measure the viscoelastic properties
PDF
Album
Supp Info
Full Research Paper
Published 24 Nov 2021

Impact of electron–phonon coupling on electron transport through T-shaped arrangements of quantum dots in the Kondo regime

  • Patryk Florków and
  • Stanisław Lipiński

Beilstein J. Nanotechnol. 2021, 12, 1209–1225, doi:10.3762/bjnano.12.89

Graphical Abstract
  • embedded in a freestanding GaAs/AlGaAs membrane [44][45][46][47][48]. It has been shown that morphology manipulation of semiconductor QDs such as size, shape, strain distribution, or inhomogenities can influence the coupling strength of electron–phonon (e–ph) interactions [49]. The phononic effects appears
PDF
Album
Full Research Paper
Published 12 Nov 2021
Other Beilstein-Institut Open Science Activities