Search results

Search for "FIB" in Full Text gives 115 result(s) in Beilstein Journal of Nanotechnology.

Synthesis of embedded Au nanostructures by ion irradiation: influence of ion induced viscous flow and sputtering

  • Udai B. Singh,
  • D. C. Agarwal,
  • S. A. Khan,
  • S. Mohapatra,
  • H. Amekura,
  • D. P. Datta,
  • Ajay Kumar,
  • R. K. Choudhury,
  • T. K. Chan,
  • Thomas Osipowicz and
  • D. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 105–110, doi:10.3762/bjnano.5.10

Graphical Abstract
  • ) measurements were performed on pristine and irradiated samples by using a 200 kV field emission TEM (JEM 2100F from JEOL) at TEM station, NIMS, Japan. XTEM samples are prepared by the focused ion beam (FIB) method by using a 30 keV Ga beam in a JEOL JEM 9320 FIB. Results and Discussions The XTEM image of
PDF
Album
Full Research Paper
Published 29 Jan 2014

In situ growth optimization in focused electron-beam induced deposition

  • Paul M. Weirich,
  • Marcel Winhold,
  • Christian H. Schwalb and
  • Michael Huth

Beilstein J. Nanotechnol. 2013, 4, 919–926, doi:10.3762/bjnano.4.103

Graphical Abstract
  • -beam SEM/FIB microscope (FEI, Nova Nanolab 600) equipped with a Schottky electron emitter. The precursor gases are introduced into the high-vacuum chamber via a gas injection system through a thin capillary (diameter = 0.5 mm) in close proximity to the focus of the electron beam. As a substrate
PDF
Album
Full Research Paper
Published 17 Dec 2013

Ultramicrosensors based on transition metal hexacyanoferrates for scanning electrochemical microscopy

  • Maria A. Komkova,
  • Angelika Holzinger,
  • Andreas Hartmann,
  • Alexei R. Khokhlov,
  • Christine Kranz,
  • Arkady A. Karyakin and
  • Oleg G. Voronin

Beilstein J. Nanotechnol. 2013, 4, 649–654, doi:10.3762/bjnano.4.72

Graphical Abstract
  • .14.740.11.1374) are gratefully acknowledged. Gregor Neusser and FIB Center Ulm are acknowledged for Pt–C depositions.
PDF
Album
Full Research Paper
Published 14 Oct 2013

Deformation-induced grain growth and twinning in nanocrystalline palladium thin films

  • Aaron Kobler,
  • Jochen Lohmiller,
  • Jonathan Schäfer,
  • Michael Kerber,
  • Anna Castrup,
  • Ankush Kashiwar,
  • Patric A. Gruber,
  • Karsten Albe,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2013, 4, 554–566, doi:10.3762/bjnano.4.64

Graphical Abstract
  • -mortem TEM analysis were prepared either by focused ion beam (FIB) using a FEI Strata 400S DualBeam at 5 kV and 8 pA beam current for final polishing (sample ncPd 1) or by mechanical dimpling and Argon ion milling from the polyimide side at 2.5 kV in a PIPS (Gatan) (sample ncPd 2). FIB prepared samples
  • -view FIB samples shown here were always prepared close to the surface, typically from the middle of the straining section. ACOM-TEM analysis was performed using a FEI Tecnai F20 ST operated at 200 kV in micro-probe (µp) STEM mode with spot size 8, camera length 100 mm, condenser aperture 30 µm, gun
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2013

Digging gold: keV He+ ion interaction with Au

  • Vasilisa Veligura,
  • Gregor Hlawacek,
  • Robin P. Berkelaar,
  • Raoul van Gastel,
  • Harold J. W. Zandvliet and
  • Bene Poelsema

Beilstein J. Nanotechnol. 2013, 4, 453–460, doi:10.3762/bjnano.4.53

Graphical Abstract
  • open. As helium ions are light particles, sputtering processes are much less effective with HIM as compared to other focused ion beam (FIB) techniques that typically use gallium ions. Nevertheless, helium ion beam imaging can lead to considerable sample and, in particular surface, modifications. The
PDF
Album
Full Research Paper
Published 24 Jul 2013

Grating-assisted coupling to nanophotonic circuits in microcrystalline diamond thin films

  • Patrik Rath,
  • Svetlana Khasminskaya,
  • Christoph Nebel,
  • Christoph Wild and
  • Wolfram H.P. Pernice

Beilstein J. Nanotechnol. 2013, 4, 300–305, doi:10.3762/bjnano.4.33

Graphical Abstract
  • waveguide fabricated this way is shown in Figure 1b. Focussed ion beam (FIB) milling is used to cut through a waveguide cross-section, which is the reason for the line features at the edge of the waveguide. The FIB image reveals that the sidewalls resulting from the etching are near vertical, illustrating
PDF
Album
Full Research Paper
Published 07 May 2013

Hydrogen-plasma-induced magnetocrystalline anisotropy ordering in self-assembled magnetic nanoparticle monolayers

  • Alexander Weddemann,
  • Judith Meyer,
  • Anna Regtmeier,
  • Irina Janzen,
  • Dieter Akemeier and
  • Andreas Hütten

Beilstein J. Nanotechnol. 2013, 4, 164–172, doi:10.3762/bjnano.4.16

Graphical Abstract
  • with a FEI Helios Dual Beam FIB by cutting through a suitable particle agglomeration. The lamella was subsequently thinned down to a thickness of 20 nm. In order to protect the particles from contamination and possible ablation by gallium ions, an additional thin protective layer of platinum was
PDF
Album
Full Research Paper
Published 04 Mar 2013

Low-dose patterning of platinum nanoclusters on carbon nanotubes by focused-electron-beam-induced deposition as studied by TEM

  • Xiaoxing Ke,
  • Carla Bittencourt,
  • Sara Bals and
  • Gustaaf Van Tendeloo

Beilstein J. Nanotechnol. 2013, 4, 77–86, doi:10.3762/bjnano.4.9

Graphical Abstract
  • -selectively decorated on the CNTs by using a focused ion beam (FIB) and subsequent chemical treatment [9]. However, these approaches either involve several steps or require masks to perform the site-specific deposition. Therefore, a more straightforward strategy to perform site-specific metal deposition is
  • in ethanol and then a drop of the solution is deposited onto a holey carbon film supported by a standard TEM copper grid. FEBID (Figures 1, 3, 5) is performed by using an FEI Nova 200 Nanolab DualBeam SEM/FIB. During the deposition in the DualBeam system, the working distance is set to be 5.0 mm
  • ranging from 44 pA to 4.3 nA. The electron dose for all experiments is maintained as 2.5 × 109 electrons/μm2. FEBID (Figures 4, 6, 7) is performed by using an FEI Helios DualBeam SEM/FIB. During the deposition in the DualBeam system, the working distance is set to be 4.0 mm throughout the experiments. The
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2013

Diamond nanophotonics

  • Katja Beha,
  • Helmut Fedder,
  • Marco Wolfer,
  • Merle C. Becker,
  • Petr Siyushev,
  • Mohammad Jamali,
  • Anton Batalov,
  • Christopher Hinz,
  • Jakob Hees,
  • Lutz Kirste,
  • Harald Obloh,
  • Etienne Gheeraert,
  • Boris Naydenov,
  • Ingmar Jakobi,
  • Florian Dolde,
  • Sébastien Pezzagna,
  • Daniel Twittchen,
  • Matthew Markham,
  • Daniel Dregely,
  • Harald Giessen,
  • Jan Meijer,
  • Fedor Jelezko,
  • Christoph E. Nebel,
  • Rudolf Bratschitsch,
  • Alfred Leitenstorfer and
  • Jörg Wrachtrup

Beilstein J. Nanotechnol. 2012, 3, 895–908, doi:10.3762/bjnano.3.100

Graphical Abstract
  • other hand, one can use a focused ion beam (FIB) to fabricate a micrometer-sized hemisphere around a preselected diamond color center. In the following, both approaches are discussed. We first focus on a macroscopic solid immersion lens. Figure 6a shows a photograph of a macroscopic hemispherical lens
  • therefore explore whether this can be used to produce high-quality micrometer-sized diamond SILs. In order to register a SIL precisely on top of a single color center, we first fabricate a grid of markers (circular holes) into the surface of a diamond sample using a FIB. Figure 7a shows a scanning electron
  • microscopy (SEM) image of such FIB markers. Subsequently, we analyze the sample with a confocal fluorescence microscope and determine single color centers within the grid (Figure 7b). The position of the color centers relative to the FIB markers as well as their depth below the diamond surface is determined
PDF
Album
Video
Full Research Paper
Published 21 Dec 2012

Ordered arrays of nanoporous gold nanoparticles

  • Dong Wang,
  • Ran Ji,
  • Arne Albrecht and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2012, 3, 651–657, doi:10.3762/bjnano.3.74

Graphical Abstract
  • by using laser interference lithography [15], focused ion beam (FIB) [17], or substrate conformal imprint lithography (SCIL) [19]. During the dewetting of metal films onto prepatterned substrates, the periodic structure of the prepatterned substrates modulates the local excess chemical potential by
PDF
Album
Supp Info
Full Research Paper
Published 13 Sep 2012

Focused electron beam induced deposition: A perspective

  • Michael Huth,
  • Fabrizio Porrati,
  • Christian Schwalb,
  • Marcel Winhold,
  • Roland Sachser,
  • Maja Dukic,
  • Jonathan Adams and
  • Georg Fantner

Beilstein J. Nanotechnol. 2012, 3, 597–619, doi:10.3762/bjnano.3.70

Graphical Abstract
  • independent gas injection systems [28]. In this work the liquid and pyrophoric precursor Si5H12 was used for the first time in FEBID as carbon-free source of Si. The experiments were performed in a dual-beam instrument (FIB/SEM, FEI Nova NanoLab 600) with a Schottky electron emitter. The beam voltage and
  • at room temperature [13]. It would be desirable to also have access to hard-magnetic structures via the FEBID route. In this regard CoPt in the L10 phase represents an excellent choice. Experimental: The experiments were performed in a dual-beam microscope with Schottky electron emitter (FIB/SEM, FEI
PDF
Album
Video
Review
Published 29 Aug 2012

Nano-structuring, surface and bulk modification with a focused helium ion beam

  • Daniel Fox,
  • Yanhui Chen,
  • Colm C. Faulkner and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2012, 3, 579–585, doi:10.3762/bjnano.3.67

Graphical Abstract
  • mechanical [4] properties. The gallium focused ion beam (FIB) microscope has been commercially available for twenty years. FIB microscopes have proven themselves as versatile tools with applications in a range of fields including biology [5], geology [6], materials science [7][8] and the semiconductor
  • industry [9]. While the FIB has been adopted for many uses it is not without its limitations. The FIB uses gallium ions, a metallic element which is often considered a contaminant. The large momentum of the gallium ions in the FIB can have a very destructive effect on materials, greatly altering their
  • crystal structure. The resolution of the FIB is limited by the energy spread of the gallium ions generated from the liquid metal ion source (LMIS). The sputter yield is also too large for acute patterning control over very short lateral distances. The recently developed Carl Zeiss Orion Plus helium ion
PDF
Album
Supp Info
Full Research Paper
Published 08 Aug 2012

Plasmonic nanostructures fabricated using nanosphere-lithography, soft-lithography and plasma etching

  • Manuel R. Gonçalves,
  • Taron Makaryan,
  • Fabian Enderle,
  • Stefan Wiedemann,
  • Alfred Plettl,
  • Othmar Marti and
  • Paul Ziemann

Beilstein J. Nanotechnol. 2011, 2, 448–458, doi:10.3762/bjnano.2.49

Graphical Abstract
  • this kind require large area nanostructured surfaces. Thus only methods allowing large scale lithography/patterning are appropriate for this purpose. E-beam lithography and FIB based nanofabrication would be prohibitively expensive. The most common fabrication technique using arrays of polystyrene (PS
PDF
Album
Full Research Paper
Published 16 Aug 2011

Formation of precise 2D Au particle arrays via thermally induced dewetting on pre-patterned substrates

  • Dong Wang,
  • Ran Ji and
  • Peter Schaaf

Beilstein J. Nanotechnol. 2011, 2, 318–326, doi:10.3762/bjnano.2.37

Graphical Abstract
  • was observed on a thin metal film that had been patterned using focused ion beam (FIB) before the dewetting process [34]. However, the FIB patterning is a time-consuming process. Giermann and Thompson reported the formation of a 2D ordered Au nanoparticle array, with uniform size and aligned
PDF
Album
Video
Full Research Paper
Published 22 Jun 2011

Manipulation of gold colloidal nanoparticles with atomic force microscopy in dynamic mode: influence of particle–substrate chemistry and morphology, and of operating conditions

  • Samer Darwich,
  • Karine Mougin,
  • Akshata Rao,
  • Enrico Gnecco,
  • Shrisudersan Jayaraman and
  • Hamidou Haidara

Beilstein J. Nanotechnol. 2011, 2, 85–98, doi:10.3762/bjnano.2.10

Graphical Abstract
  • (FIB) milling technique. The width and depth of the pits are 650 nm and 5 nm, respectively, and the spacing between two adjacent pits is 125 nm. On the patterned surface, the mean direction of motion remains identical (on average), even after a long acquisition time. This stability of the direction of
PDF
Album
Full Research Paper
Published 04 Feb 2011
Other Beilstein-Institut Open Science Activities