Search results

Search for "Si substrate" in Full Text gives 202 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

High-stress study of bioinspired multifunctional PEDOT:PSS/nanoclay nanocomposites using AFM, SEM and numerical simulation

  • Alfredo J. Diaz,
  • Hanaul Noh,
  • Tobias Meier and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2017, 8, 2069–2082, doi:10.3762/bjnano.8.207

Graphical Abstract
  • in Figure 5b. The measurement shows a thickness of approximately 3 nm (red curve) in lightly repulsive imaging mode (free amplitude of 60 nm). This sample was prepared by diluting the “as prepared” dispersion and depositing it onto a Si substrate in order to separate the individual nanoplatelets (the
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2017

Advances and challenges in the field of plasma polymer nanoparticles

  • Andrei Choukourov,
  • Pavel Pleskunov,
  • Daniil Nikitin,
  • Valerii Titov,
  • Artem Shelemin,
  • Mykhailo Vaidulych,
  • Anna Kuzminova,
  • Pavel Solař,
  • Jan Hanuš,
  • Jaroslav Kousal,
  • Ondřej Kylián,
  • Danka Slavínská and
  • Hynek Biederman

Beilstein J. Nanotechnol. 2017, 8, 2002–2014, doi:10.3762/bjnano.8.200

Graphical Abstract
  • ; b) GLAD of nylon-sputtered plasma polymer over the preseeded NPs. SEM images with combined top view and cross-sections of the deposits produced as a result of RF magnetron sputtering of nylon: a) normal deposition on blank Si substrate; b) GLAD at 80° on blank Si substrate; c) normal deposition over
PDF
Album
Review
Published 25 Sep 2017

Identifying the nature of surface chemical modification for directed self-assembly of block copolymers

  • Laura Evangelio,
  • Federico Gramazio,
  • Matteo Lorenzoni,
  • Michaela Gorgoi,
  • Francisco Miguel Espinosa,
  • Ricardo García,
  • Francesc Pérez-Murano and
  • Jordi Fraxedas

Beilstein J. Nanotechnol. 2017, 8, 1972–1981, doi:10.3762/bjnano.8.198

Graphical Abstract
  • oxide between the brush layer and the SiO2/Si substrate. Experimental Preparation and chemical modification of brush layers The starting substrates were <100> silicon wafers (p-type silicon of 4–40 Ω·cm resistivity) with a native silicon oxide layer on top. A thin film of hydroxyl-terminated polystyrene
PDF
Album
Supp Info
Full Research Paper
Published 21 Sep 2017

Imidazolium-based ionic liquids used as additives in the nanolubrication of silicon surfaces

  • Patrícia M. Amorim,
  • Ana M. Ferraria,
  • Rogério Colaço,
  • Luís C. Branco and
  • Benilde Saramago

Beilstein J. Nanotechnol. 2017, 8, 1961–1971, doi:10.3762/bjnano.8.197

Graphical Abstract
  • the first time that these ILs are successfully tested as additives to base lubricants. Strong adsorption of [EtSO4] on the surface oxide that covers the Si substrate should be responsible for this behavior. The S–O bond of this anion is known to interact with the silica surface to yield Si–O–S bonds
PDF
Album
Full Research Paper
Published 20 Sep 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • reveal no noteworthy differences. (4) Spatial maps of dI/dz reveal that the surface exhibits a uniform work function and a lattice constant of 3.16 Å. (5) X-ray photo-electron spectroscopy measurements reveal that sputtering of the MoS2/Si substrate does not lead to a decrease, but an increase of the
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Growth and characterization of textured well-faceted ZnO on planar Si(100), planar Si(111), and textured Si(100) substrates for solar cell applications

  • Chin-Yi Tsai,
  • Jyong-Di Lai,
  • Shih-Wei Feng,
  • Chien-Jung Huang,
  • Chien-Hsun Chen,
  • Fann-Wei Yang,
  • Hsiang-Chen Wang and
  • Li-Wei Tu

Beilstein J. Nanotechnol. 2017, 8, 1939–1945, doi:10.3762/bjnano.8.194

Graphical Abstract
  • , and CL as well. The reflectance spectra of these three samples show that the antireflection function provided by theses samples mostly results from the nanometer-scaled texture of the ZnO films, while the micrometer-scaled texture of the Si substrate has a limited contribution. The results of this
  • sunlight from the metals, but they can also serve the function of antireflection coating (ARC) films, given proper design of the film thickness. A ZnO thin film with appropriate doping could potentially act as the emitter with a Si substrate base to form a heterostructure solar cell. Therefore, in the most
  • -sized texture of the Si substrate has a limited contribution. Discussion The main grain orientation, surface morphology, AFM surface roughness (Rq) from AFM, average grain size (D), strain (ε), and CL intensity of samples ZnOp(100), ZnOp(111), and ZnOt(100) are shown in Table 1. The results clearly
PDF
Album
Full Research Paper
Published 15 Sep 2017

Laser processing of thin-film multilayer structures: comparison between a 3D thermal model and experimental results

  • Babak B. Naghshine and
  • Amirkianoosh Kiani

Beilstein J. Nanotechnol. 2017, 8, 1749–1759, doi:10.3762/bjnano.8.176

Graphical Abstract
  • sample. Laser processing of Si substrate (bulk material) The melting and boiling points of silicon are 1414 °C and 3538 °C respectively and the heats of fusion and vaporization are 1788 and 13637 kJ/kg [22]. After introducing all the physical properties and the plasma absorption of the silicon, the
  • , Canada 10.3762/bjnano.8.176 Abstract In this research, a numerical model is introduced for simulation of laser processing of thin film multilayer structures, to predict the temperature and ablated area for a set of laser parameters including average power and repetition rate. Different thin-films on Si
  • substrate were processed by nanosecond Nd:YAG laser pulses and the experimental and numerical results were compared to each other. The results show that applying a thin film on the surface can completely change the temperature field and vary the shape of the heat affected zone. The findings of this paper
PDF
Album
Full Research Paper
Published 24 Aug 2017

Fixation mechanisms of nanoparticles on substrates by electron beam irradiation

  • Daichi Morioka,
  • Tomohiro Nose,
  • Taiki Chikuta,
  • Kazutaka Mitsuishi and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2017, 8, 1523–1529, doi:10.3762/bjnano.8.153

Graphical Abstract
  • , the diameters of which are 100 nm and 20 nm, fixed on the Si substrate by a line scan of the electron beam at an accelerating voltage of 2 kV. The particles were fixed on lines with finite widths. The widths of the particle lines are 0.5 μm and 0.3 μm for particle sizes of 100 nm and 20 nm
  • also demonstrated. Figure 11 shows silica nanoparticles fixed on a Au-coated Si substrate. As the surface of colloidal silica particles was modified with –COOH groups, a dissociation of the organic shells occurs and the particles are fixed on the substrate. Conclusion The mechanism of fixing
  • schematic illustration of this experimental technique is shown in Figure 12. A Si substrate was immersed in the colloidal Au solution for 24 h at room temperature to place nanoparticles uniformly over the surface of the substrate. Then a focused electron beam was scanned in a line over the substrate with
PDF
Album
Full Research Paper
Published 26 Jul 2017

A top-down approach for fabricating three-dimensional closed hollow nanostructures with permeable thin metal walls

  • Carlos Angulo Barrios and
  • Víctor Canalejas-Tejero

Beilstein J. Nanotechnol. 2017, 8, 1231–1237, doi:10.3762/bjnano.8.124

Graphical Abstract
  • of arrays of closed cylindrical nanocages of Al on a Si substrate. In addition, relevant optical and sensing properties of the hollow configuration are studied by reflectance measurements and simulations. Results and Discussion Scanning electron microscope (SEM) photographs in Figure 1 illustrate the
  • fabrication sequence of an array of closed nanocages (hollow nanopillars) made of thin-walled Al. First, an array of SU-8 negative resist nanopillars are created by electron-beam lithography (EBL) on an Al-coated Si substrate (Figure 1a). The SU-8 nanopillars exhibit a smooth surface with rounded top edges
  • measured spectral reflectance of a 600 nm period, square lattice of SU-8 nanopillars fabricated on an Al-coated Si substrate (blue curve), the same structure after the deposition of a 40 nm thick Al film (red curve), and the latter structure after an oxygen-plasma treatment (black curve). As analyzed in a
PDF
Album
Full Research Paper
Published 08 Jun 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • measurements suggest directions for future work on our PVD MoS2 films. Keywords: electrode; hydrogen evolution reaction (HER); magnetron sputter deposition; MoS2; reticulated vitreous carbon (RVC) foam; SiO2/Si substrate; Introduction Molybdenum disulphide (MoS2) is a layered chemical compound comprised of
PDF
Album
Full Research Paper
Published 22 May 2017

The integration of graphene into microelectronic devices

  • Guenther Ruhl,
  • Sebastian Wittmann,
  • Matthias Koenig and
  • Daniel Neumaier

Beilstein J. Nanotechnol. 2017, 8, 1056–1064, doi:10.3762/bjnano.8.107

Graphical Abstract
  • Society. Schematic illustration of the basic approach for the method of direct growth of graphene on a SiO2 surface. (a) A thin Ni film is deposited on a SiO2/Si substrate. (b) Plasma CVD is performed. (c) Carbon atoms diffuse into the Ni film, and graphene is preferentially grown along the interface
  • between the Ni and SiO2 layers. (d) Graphene on a SiO2/Si substrate is realized by removing the Ni film using a chemical etching technique. Reprinted with permission from [29], copyright 2012 American Chemical Society. Schematic illustration of the mobility (experiment) as a function of the ratio between
PDF
Album
Review
Published 15 May 2017

CVD transfer-free graphene for sensing applications

  • Chiara Schiattarella,
  • Sten Vollebregt,
  • Tiziana Polichetti,
  • Brigida Alfano,
  • Ettore Massera,
  • Maria Lucia Miglietta,
  • Girolamo Di Francia and
  • Pasqualina Maria Sarro

Beilstein J. Nanotechnol. 2017, 8, 1015–1022, doi:10.3762/bjnano.8.102

Graphical Abstract
  • of graphene down to micrometre-size dimensions. A photo-lithographic process, combined with SF6 dry etching, has been used to shape the Mo in the desired form. Graphene layers have then been grown on pre-patterned Mo/SiO2/Si substrate by means of AIXTRON BlackMagic Pro equipment, setting the
PDF
Album
Full Research Paper
Published 08 May 2017

Nanoantenna-assisted plasmonic enhancement of IR absorption of vibrational modes of organic molecules

  • Alexander G. Milekhin,
  • Olga Cherkasova,
  • Sergei A. Kuznetsov,
  • Ilya A. Milekhin,
  • Ekatherina E. Rodyakina,
  • Alexander V. Latyshev,
  • Sreetama Banerjee,
  • Georgeta Salvan and
  • Dietrich R. T. Zahn

Beilstein J. Nanotechnol. 2017, 8, 975–981, doi:10.3762/bjnano.8.99

Graphical Abstract
  • ) were deposited on the antenna arrays and a Si substrate. The homogeneity of the CoPc films deposited on the arrays was probed using micro-Raman mapping. The Raman spectra of the CoPc films deposited on a Si substrate (Figure 2a) reveal a rich spectrum of CoPc vibrational modes similar to that observed
  • to the most intense mode of the Si substrate (observed at 520.5 cm−1), the RRS spectrum (Figure 2) is dominated by the vibrational mode at 1543 cm−1 assigned to the C=N stretching mode [23]. The chemical structure of CoPc is shown in the inset of Figure 2a. The mode frequencies observed at 683, 750
  • from natural silicon oxide covering the Si substrate [33]. The deposition of thin CoPc films on the nanoantenna arrays leads to intensity enhancement for the vibrational modes at 724 and 755 cm−1, which are inherent to CoPc in the spectral range of the LSPR band. Note that for the 3 nm thick CoPc film
PDF
Album
Full Research Paper
Published 03 May 2017

Triptycene-terminated thiolate and selenolate monolayers on Au(111)

  • Jinxuan Liu,
  • Martin Kind,
  • Björn Schüpbach,
  • Daniel Käfer,
  • Stefanie Winkler,
  • Wenhua Zhang,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2017, 8, 892–905, doi:10.3762/bjnano.8.91

Graphical Abstract
  • vaporisator (Leybold Univex 300). Gold (Chempur, 99.995%) layers with a thickness of 150 nm were deposited at a rate of 1 nm/s. An 8 nm titanium (Chempur, 99.8%) layer was deposited at a rate of 0.15 nm/s as an adhesion layer between the Si substrate and the Au layer. The deposition rate and thickness were
PDF
Album
Supp Info
Full Research Paper
Published 20 Apr 2017

Relationships between chemical structure, mechanical properties and materials processing in nanopatterned organosilicate fins

  • Gheorghe Stan,
  • Richard S. Gates,
  • Qichi Hu,
  • Kevin Kjoller,
  • Craig Prater,
  • Kanwal Jit Singh,
  • Ebony Mays and
  • Sean W. King

Beilstein J. Nanotechnol. 2017, 8, 863–871, doi:10.3762/bjnano.8.88

Graphical Abstract
  • before patterning using a Thermo Scientific Nicolet 6700 FTIR spectrometer and deuterated L-alanine doped triglycine sulfate (DLaTGS) detector. The spectra were acquired from 400–7000 cm−1 with 4 cm−1 resolution and the signal was averaged over 128 scans. The absorption spectrum of the Si substrate and
PDF
Album
Full Research Paper
Published 13 Apr 2017

Investigation of growth dynamics of carbon nanotubes

  • Marianna V. Kharlamova

Beilstein J. Nanotechnol. 2017, 8, 826–856, doi:10.3762/bjnano.8.85

Graphical Abstract
  • SiCl4. As soon as the liquid alloy particle was supersaturated, the growth of the whisker started. It occurred by the precipitation of Si atoms from the droplet at the interface between solid Si and liquid alloy. As a result, the alloy droplet was displaced from the Si substrate crystal to the tip of
PDF
Album
Review
Published 11 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • using an FEI NOVA 600 dual-beam system equipped with multiple gas injection systems (GIS). Before loading the Si substrate, it was cleaned via sonication in acetone for 5 minutes and rinsed in isopropanol before drying. The precursor gas was injected using a FEI GIS and the temperature was held at 45 °C
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Self-assembly of silicon nanowires studied by advanced transmission electron microscopy

  • Marta Agati,
  • Guillaume Amiard,
  • Vincent Le Borgne,
  • Paola Castrucci,
  • Richard Dolbec,
  • Maurizio De Crescenzi,
  • My Alì El Khakani and
  • Simona Boninelli

Beilstein J. Nanotechnol. 2017, 8, 440–445, doi:10.3762/bjnano.8.47

Graphical Abstract
  • SiNS (indicated by the arrow). This indicates the Si substrate on which the NWs grow before further oxidation occurs, which is induced by the oxygen present in the ICP chamber. Indeed, the oxygen derives from the native oxide of the Si powder feedstock, which is released during the spheroidization
  • crystalline Si substrate. Hence, we conclude that the VLS mechanism is responsible for the growth of short SiNWs in the above-described ICP process, provided that a small amount of Fe is present during the spheroidization process. In this way, the ICP technique can be seen as a prospect for the synthesis of
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2017

Fabrication of black-gold coatings by glancing angle deposition with sputtering

  • Alan Vitrey,
  • Rafael Alvarez,
  • Alberto Palmero,
  • María Ujué González and
  • José Miguel García-Martín

Beilstein J. Nanotechnol. 2017, 8, 434–439, doi:10.3762/bjnano.8.46

Graphical Abstract
  • the samples are responsible for their different appearance shown in Figure 2 and their distinctive spectral behavior presented in Figure 4, where the reflectance of the samples with black and golden color is plotted. For the sake of comparison, the calculated reflectance of a bare Si substrate and
  • black color (a) and golden color (b). For the sake of comparison, the calculated spectra of a bare Si substrate (cyan) and a continuous Au thin film (red) have been also included. (a) Photograph of two samples prepared onto MgO substrates: a continuous Au thin film prepared with σ = 0° (left) and a
PDF
Album
Full Research Paper
Published 14 Feb 2017

In-situ monitoring by Raman spectroscopy of the thermal doping of graphene and MoS2 in O2-controlled atmosphere

  • Aurora Piazza,
  • Filippo Giannazzo,
  • Gianpiero Buscarino,
  • Gabriele Fisichella,
  • Antonino La Magna,
  • Fabrizio Roccaforte,
  • Marco Cannas,
  • Franco Mario Gelardi and
  • Simonpietro Agnello

Beilstein J. Nanotechnol. 2017, 8, 418–424, doi:10.3762/bjnano.8.44

Graphical Abstract
  • ) layer on Si substrate of the same kind used for Gr [11]. Flakes of lateral size larger than 10 μm, and thickness ranging from 10 to 100 nm were typically obtained by this procedure. In situ Raman measurements and thermal treatment up to 430 °C were carried out with the same equipment used for Gr
PDF
Album
Full Research Paper
Published 10 Feb 2017

Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

  • Filippo Giannazzo,
  • Gabriele Fisichella,
  • Aurora Piazza,
  • Salvatore Di Franco,
  • Giuseppe Greco,
  • Simonpietro Agnello and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2017, 8, 254–263, doi:10.3762/bjnano.8.28

Graphical Abstract
  • Back-gated transistors were fabricated using MoS2 flakes exfoliated from molybdenite bulk crystals (supplier SPI [19]) with thicknesses ranging from ≈40 to ≈50 nm and transferred onto a highly doped n-type Si substrate covered with 380 nm of thermally grown SiO2. An accurate sample preparation protocol
  • from 298 to 373 K was determined and the physical mechanisms of these dependences were discussed. Results and Discussion Back-gated transistors have been fabricated using multilayer MoS2 flakes (with thickness ranging from ≈40 to ≈50 nm) exfoliated from bulk molybdenite crystals onto a highly doped Si
  • substrate covered with 380 nm thick, thermally grown SiO2. Such relatively thick MoS2 samples have been chosen since it has been reported that the electrical properties (μ, Vth) of simple back-gated transistors fabricated with multilayer MoS2 are much less affected by the effect of the external environment
PDF
Album
Full Research Paper
Published 25 Jan 2017

Colorimetric gas detection by the varying thickness of a thin film of ultrasmall PTSA-coated TiO2 nanoparticles on a Si substrate

  • Urmas Joost,
  • Andris Šutka,
  • Meeri Visnapuu,
  • Aile Tamm,
  • Meeri Lembinen,
  • Mikk Antsov,
  • Kathriin Utt,
  • Krisjanis Smits,
  • Ergo Nõmmiste and
  • Vambola Kisand

Beilstein J. Nanotechnol. 2017, 8, 229–236, doi:10.3762/bjnano.8.25

Graphical Abstract
  • ultrasmall TiO2 nanoparticles (NPs) for a colorimetric gas sensor. The functional thin film is extremely simple, consisting of TiO2 NPs and the elastic binding agent p-toluenesulfonic acid (PTSA) on a Si substrate. It is not necessary to use particles with narrow size distributions of diameters in well
  • from the film/substrate interface, as schematically demonstrated in Figure 2. The functional thin film is extremely simple, consisting of TiO2 NPs (the mean size of 3 nm was measured by TEM and DLS, Figure 3a and Figure 3e) and the binding agent PTSA on a Si substrate. It is a colorimetric gas sensor
PDF
Album
Full Research Paper
Published 24 Jan 2017

Influence of hydrofluoric acid treatment on electroless deposition of Au clusters

  • Rachela G. Milazzo,
  • Antonio M. Mio,
  • Giuseppe D’Arrigo,
  • Emanuele Smecca,
  • Alessandra Alberti,
  • Gabriele Fisichella,
  • Filippo Giannazzo,
  • Corrado Spinella and
  • Emanuele Rimini

Beilstein J. Nanotechnol. 2017, 8, 183–189, doi:10.3762/bjnano.8.19

Graphical Abstract
  • uniformly assemble on the Si substrate with elongated and wide structures of a few tens of nanometers long. After 4 min in DHF (Figure 2b), they arrange as small particles of spherical shape with a radius of less than 10 nm. Although the images were taken in bright field mode, a huge mass contrast between
  • , showed the presence of randomly oriented Au clusters coexisting with the heteroepitaxial regions on the Si substrate. Moreover, the shape of the (200) diffraction peak indicates that two families of grains, both exhibiting texturing in the [001] crystallographic direction, are present. The deconvolution
  • TEM micrographs of AuNPs electroless deposited on a Si substrate by immersion for 3 s in the solution after a DHF pretreatment of 240 s; sample preparation (a) standard high energy and (b) gentle milling procedure. Gold electroless deposition on Si(100) after an DHF pretreatment of 10 s (a) and 240 s
PDF
Album
Supp Info
Full Research Paper
Published 18 Jan 2017

Nitrogen-doped twisted graphene grown on copper by atmospheric pressure CVD from a decane precursor

  • Ivan V. Komissarov,
  • Nikolai G. Kovalchuk,
  • Vladimir A. Labunov,
  • Ksenia V. Girel,
  • Olga V. Korolik,
  • Mikhail S. Tivanov,
  • Algirdas Lazauskas,
  • Mindaugas Andrulevičius,
  • Tomas Tamulevičius,
  • Viktoras Grigaliūnas,
  • Šarunas Meškinis,
  • Sigitas Tamulevičius and
  • Serghej L. Prischepa

Beilstein J. Nanotechnol. 2017, 8, 145–158, doi:10.3762/bjnano.8.15

Graphical Abstract
  • the insets to Figures Figure 2a and Figure 2b the 2D peaks are shown revealing the symmetry of the 2D band. The latter indicates the weak interlayer interaction, which will be discussed later. In Figure 3a we demonstrate the Rayleigh image of sample A transferred to a SiO2/Si substrate. Raman mapping
  • 1588 cm−1 against 1580 cm−1 for SLG [25]. Figure 5a–d shows Raman maps (400 points) of sample B transferred onto a SiO2/Si substrate. The corresponding histograms are presented in Figure 6a–d. A single Raman spectrum was accumulated for 10 s with a laser wavelength of 473 nm and a beam diameter of
  • partitioning procedure following different parameters (this result is not shown here). The obtained results are in reasonable agreement with each other. Therefore, in order to demonstrate the universality of the elaborated method, for sample B on a SiO2/Si substrate, the Raman data set splitting was based on
PDF
Album
Full Research Paper
Published 16 Jan 2017

Ordering of Zn-centered porphyrin and phthalocyanine on TiO2(011): STM studies

  • Piotr Olszowski,
  • Lukasz Zajac,
  • Szymon Godlewski,
  • Bartosz Such,
  • Rémy Pawlak,
  • Antoine Hinaut,
  • Res Jöhr,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymonski

Beilstein J. Nanotechnol. 2017, 8, 99–107, doi:10.3762/bjnano.8.11

Graphical Abstract
  • role, the mechanism involved in such an interaction was concerned with the specific p–d orbital coupling between the localized Si substrate pz states on the B-passivated Si(111) surface and the metal atom at the center of the flat laying phthalocyanine molecule. This type of mechanism is not applicable
PDF
Album
Full Research Paper
Published 11 Jan 2017
Other Beilstein-Institut Open Science Activities