Search results

Search for "TiO2" in Full Text gives 348 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • and spray coating PSC fabrication processes. Jiang et al. [34] solved this problem by successfully applying inkjet printing to deposit a flat and uniform CH3NH3PbI3 (MAPbI3) perovskite layer on a TiO2 film. Inkjet printing is a noncontact printing technique with direct control of material deposition
PDF
Album
Review
Published 06 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • Figure 10), where they were covered by a layer of N-doped TiO2 (TiON@NCS) [34] or N-doped TaxOy (TaON@NCS) [33]. The covering was supposed to serve two purposes, first, to yield ORR activity and, second, to protect the (nitrided) carbon core against corrosion. In this study we used the same procedure for
PDF
Album
Full Research Paper
Published 02 Jan 2020

Advanced hybrid nanomaterials

  • Andreas Taubert,
  • Fabrice Leroux,
  • Pierre Rabu and
  • Verónica de Zea Bermudez

Beilstein J. Nanotechnol. 2019, 10, 2563–2567, doi:10.3762/bjnano.10.247

Graphical Abstract
  • the polyol process” [19], the synthetic process was found to be of prime importance to shape the nanoparticles and to optimize their surface/volume ratio in relation to the magnetic behavior. A one-step non-hydrolytic sol–gel synthesis of mesoporous TiO2 phosphonate hybrid materials was applied to
PDF
Editorial
Published 20 Dec 2019

Synthesis and acetone sensing properties of ZnFe2O4/rGO gas sensors

  • Kaidi Wu,
  • Yifan Luo,
  • Ying Li and
  • Chao Zhang

Beilstein J. Nanotechnol. 2019, 10, 2516–2526, doi:10.3762/bjnano.10.242

Graphical Abstract
  • concentration. Due to their excellent properties and cost efficiency, gas sensors based on metal oxide semiconductors, such as ZnO [5], SnO2 [6], WO3 [7], TiO2 [8], Er-SnO2 [9], Au-In2O3 [10], GO-WO3 [11] and Ni-SnO2/G [12] have been widely studied until now. However, their sensing properties regarding low
PDF
Album
Full Research Paper
Published 16 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • spectroscopy, semitransparent Sb2S3 thin films can be rapidly grown in air by the area-scalable ultrasonic spray pyrolysis method. Integrated into a ITO/TiO2/Sb2S3/P3HT/Au solar cell, a power conversion efficiency (PCE) of 5.5% at air mass 1.5 global (AM1.5G) is achieved, which is a record among spray
  • -deposited Sb2S3 solar cells. An average visible transparency (AVT) of 26% of the back-contact-less ITO/TiO2/Sb2S3 solar cell stack in the wavelength range of 380–740 nm is attained by tuning the Sb2S3 absorber thickness to 100 nm. In scale-up from mm2 to cm2 areas, the Sb2S3 hybrid solar cells show a
  • pioneered by the teams of Nair, Nezu, and Hodes in the mid-2000s [19][23][24]. The record PCE of 7.5%, achieved with solar cells based on Sb2S3 grown by chemical bath deposition (CBD) into mesoporous TiO2, shows the excellent potential of Sb2S3 as a PV absorber, and the suitability of its fabrication by
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Polyvinylpyrrolidone as additive for perovskite solar cells with water and isopropanol as solvents

  • Chen Du,
  • Shuo Wang,
  • Xu Miao,
  • Wenhai Sun,
  • Yu Zhu,
  • Chengyan Wang and
  • Ruixin Ma

Beilstein J. Nanotechnol. 2019, 10, 2374–2382, doi:10.3762/bjnano.10.228

Graphical Abstract
  • remarkable light absorption capacity [5] and the tunable band gap [6] of inorganic–organic lead halide perovskite crystals make them suitable for the production of organic semiconductors [7], photodetectors [8], and photovoltaics [5]. In 2009, Kojima et al. achieved a breakthrough in using mesoporous TiO2 as
PDF
Album
Full Research Paper
Published 05 Dec 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • small amount of TiO2 was found in the diffraction peaks of Li4Ti5O12 fibers, which may be related to the sintering atmosphere of Li4Ti5O12 fibers. Because the sintering of Li4Ti5O12 fibers was carried out under the pressure of a graphite plate in N2 atmosphere, the sintering atmosphere is a partially
  • reductive inert atmosphere. However, TiO2 itself is a relatively stable anode material [42], so the appearance of such impurities would not affect the performance of the electrode. The Raman spectra of the two fiber materials in Figure 6 show two characteristic peaks at 1350 cm−1 and 1580 cm−1 corresponding
  • process of Ti4+/Ti3+ [25]. The two small redox peaks at 2.06 V and 1.72 V correspond to the Li+ removal from and intercalation in TiO2. From the charge–discharge curves in Figure 8 (the second cycle), it can be seen that both electrodes have obvious charge–discharge plateaus at about 3.5 V and 1.5 V
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Improved adsorption and degradation performance by S-doping of (001)-TiO2

  • Xiao-Yu Sun,
  • Xian Zhang,
  • Xiao Sun,
  • Ni-Xian Qian,
  • Min Wang and
  • Yong-Qing Ma

Beilstein J. Nanotechnol. 2019, 10, 2116–2127, doi:10.3762/bjnano.10.206

Graphical Abstract
  • of Physical Science and Information Technology, Anhui University, Hefei 230039, China 10.3762/bjnano.10.206 Abstract In this work, sulfur-doped (S-doped) TiO2 with the (001) face exposed was synthesized by thermal chemical vapor deposition at 180 or 250 °C using S/Ti molar ratios RS/Ti of 0, 0.5, 1
  • % to 68.5% due to the synergistic effects of the oxygen vacancies, increased number of surface chemical adsorption centers as a result of SO42− adsorption on the TiO2 surface and the larger pore size. (3) S-doping increases the MB degradation rate from 6.9 × 10−2 min−1 to 18.2 × 10−2 min−1 due to an
  • increase in the amount of •OH and •O2− radicals. Keywords: anatase; chemical state; degradation; photocatalytic properties; S-doping; thermal chemical vapor deposition; titanium dioxide (TiO2); Introduction Anatase TiO2 with a tetragonal symmetry has widely been used for the degradation of organic
PDF
Album
Full Research Paper
Published 01 Nov 2019

Synthesis of highly active ETS-10-based titanosilicate for heterogeneously catalyzed transesterification of triglycerides

  • Muhammad A. Zaheer,
  • David Poppitz,
  • Khavar Feyzullayeva,
  • Marianne Wenzel,
  • Jörg Matysik,
  • Radomir Ljupkovic,
  • Aleksandra Zarubica,
  • Alexander A. Karavaev,
  • Andreas Pöppl,
  • Roger Gläser and
  • Muslim Dvoyashkin

Beilstein J. Nanotechnol. 2019, 10, 2039–2061, doi:10.3762/bjnano.10.200

Graphical Abstract
  • solution was further added into 87.5 mL of the titania/silica-containing solution. The resulting molar composition of the obtained 90 mL solution is the following SiO2/TiO2/HCl/Na2O/NaCl/KF/H2O = 5.56:1:1.94:2.64:3.22:0.09:216. The solution was then further aged for 16 h in a flask at room temperature for
PDF
Album
Supp Info
Full Research Paper
Published 28 Oct 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • of the SiGe ellipsoid plus the thickness of the SiGeO oxide cover-layer, i.e., each SiGe crystallite is covered by 2–3 nm of SiGeO oxide, looking like a core–shell particle. An elemental mapping over a structure (TiO2/SiGe/TiO2)3 annealed at 600 °C in our previous study [37], showed a similar
  • columnar self-assembly of NCs. The analysis showed a well-defined mapping of Si, Ge and Ti (/TiO2) with a small fraction of oxygen observed in the SiGe layer. The NCs columns are arranged periodically, having a width of NCs of 10–15 nm, with a gap of 5–6 nm amorphous SiGeO. We note that the small SiGe
PDF
Album
Full Research Paper
Published 17 Sep 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • but suffer from poor cyclic performance due to the dissolution of intermediate polysulfides. Herein, a lightweight nanoporous TiO2 and graphene oxide (GO) composite is prepared and utilized as an interlayer between a Li anode and a sulfur cathode to suppress the polysulfide migration and improve the
  • electrochemical performance of Li/S batteries. The interlayer can capture the polysulfides due to the presence of oxygen functional groups and formation of chemical bonds. The hierarchically porous TiO2 nanoparticles are tightly wrapped in GO sheets and facilitate the polysulfide storage and chemical absorption
  • . The excellent adhesion between TiO2 nanoparticles and GO sheets resulted in enhanced conductivity, which is highly desirable for an efficient electron transfer process. The Li/S battery with a TiO2/GO-coated separator exhibited a high initial discharge capacity of 1102.8 mAh g−1 and a 100th cycle
PDF
Album
Full Research Paper
Published 19 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  • bacteria, including resistant E. coli and S. aureus strains, and when compared to commercial TiO2 nanoparticles, CSTiO2 nanospheres exhibited superior performance. In addition, the positive effect of UV irradiation on the antimicrobial activity was demonstrated. Keywords: antimicrobial nanoparticles
  • -positive and Gram-negative bacteria [2]. In recent years, metal and metal oxide NPs, such as silver, gold, titanium and zinc oxide NPs, have been extensively studied due to their interesting antimicrobial character [3][4][5]. Titanium dioxide (TiO2) NPs have also attracted significant attention due to
  • their high stability, low cost, reusability, and high photocatalytic activity [6][7][8]. These excellent properties have been applied in many products such as foods, catalyst support, air purification, water disinfection, antibacterial, cosmetics and solar cells [9][10]. Photocatalytic TiO2 favors the
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019

Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides

  • Ediana Paula Rebitski,
  • Margarita Darder and
  • Pilar Aranda

Beilstein J. Nanotechnol. 2019, 10, 1679–1690, doi:10.3762/bjnano.10.163

Graphical Abstract
  • used strategies included wet impregnation and layer-by-layer approaches to produce diverse type of multilayer heterostructures, e.g., ZnCr-LDH/TiO2 films [30], in situ formation of the LDH in presence of other nanoparticles, e.g., sepiolite [31], and reconstruction of the LDH from parent “layered
PDF
Album
Supp Info
Full Research Paper
Published 09 Aug 2019

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • show the properties of a bulk-like crystalline rock-salt TiO phase, unlike previous studies on the crystallography and electronic structure of TiO, which were based on defective thin films formed on various surfaces, e.g., TiC(100) [23] or TiO2(110) [24]. γ-TiO is the high-temperature phase with a NaCl
  • the differences between TiO2 and SrO terminations of SrTiO3(100). The last part of the study is dedicated to the discussion of the work function response of both TiO and SrTiO3 surfaces upon oxidation via ambient air exposure, in order to provide insight into the effect of oxygen, water, and carbon
  • TiO2, which both are present on the pristine surface, although TiO2 is more stable [39]. When annealed under reducing conditions, the TiO2 termination is promoted. Upon heavy reduction, there is further oxygen depletion which results in the formation of the (√5×√5)R26.6° reconstruction, which we
PDF
Album
Full Research Paper
Published 02 Aug 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • Abstract A BiOCl/TiO2/diatomite (BTD) composite was synthesized via a modified sol–gel method and precipitation/calcination method for application as a photocatalyst and shows promise for degradation of organic pollutants in wastewater upon visible-light irradiation. In the composite, diatomite was used as
  • a carrier to support a layer of titanium dioxide (TiO2) nanoparticles and bismuth oxychloride (BiOCl) nanosheets. The results show that TiO2 nanoparticles and BiOCl nanosheets uniformly cover the surface of diatomite and bring TiO2 and BiOCl into close proximity. Rhodamine B was used as the target
  • degradation product and visible light (λ > 400 nm) was used as the light source for the evaluation of the photocatalytic properties of the prepared BTD composite. The results show that the catalytic performance of the BTD composite under visible-light irradiation is much higher than that of TiO2 or BiOCl
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Imaging the surface potential at the steps on the rutile TiO2(110) surface by Kelvin probe force microscopy

  • Masato Miyazaki,
  • Huan Fei Wen,
  • Quanzhen Zhang,
  • Yuuki Adachi,
  • Jan Brndiar,
  • Ivan Štich,
  • Yan Jun Li and
  • Yasuhiro Sugawara

Beilstein J. Nanotechnol. 2019, 10, 1228–1236, doi:10.3762/bjnano.10.122

Graphical Abstract
  • , Bratislava, Slovakia 10.3762/bjnano.10.122 Abstract Although step structures have generally been considered to be active sites, their role on a TiO2 surface in catalytic reactions is poorly understood. In this study, we measured the contact potential difference around the steps on a rutile TiO2(110)-(1 × 1
  • steps in the catalytic reaction. Keywords: catalyst; Kelvin probe force microscopy; Smoluchowski effect; step; titanium dioxide; Introduction Titanium dioxide (TiO2) has attracted considerable interest for its promising applications as a photocatalyst and as catalyst support, as well as in gas sensors
  • [1][2][3][4][5][6][7]. The catalytic activity can be enhanced by the presence of defects, such as oxygen vacancies (Ov), Ti interstitials (Tiint) [8], and crystal steps. TiO2 is an n-type semiconductor because of these defects. In addition, reactive oxygen species, such as OH and H2O2 (compounds with
PDF
Album
Supp Info
Full Research Paper
Published 13 Jun 2019

Photoactive nanoarchitectures based on clays incorporating TiO2 and ZnO nanoparticles

  • Eduardo Ruiz-Hitzky,
  • Pilar Aranda,
  • Marwa Akkari,
  • Nithima Khaorapapong and
  • Makoto Ogawa

Beilstein J. Nanotechnol. 2019, 10, 1140–1156, doi:10.3762/bjnano.10.114

Graphical Abstract
  • ; nanoarchitectures; photocatalysts; titanium dioxide; zinc dioxide; Review Introduction: immobilization of nanoscale TiO2 and ZnO on clay minerals Nanoarchitectonics is a term coined by Japan's National Institute for Materials Science (NIMS), which refers to the nanoscale design of complex materials through a deep
  • silicates showing diverse structural arrangements and morphologies (Figure 1) with topologies able to accommodate a variety of NPs of semiconductors such as TiO2 and ZnO. TiO2 and, to a minor extent, ZnO NPs in the form of anatase and wurtzite phases (Figure 1E and 1F, respectively), are semiconducting
  • are more efficient as photocatalysts than the corresponding bulk TiO2 and ZnO powders when they are present as NPs. This fact could be simply explained by the fact that the smaller particles normally have a larger surface-to-volume ratio. Many studies have focused on the photocatalytic activities of
PDF
Album
Review
Published 31 May 2019

Revisiting semicontinuous silver films as surface-enhanced Raman spectroscopy substrates

  • Malwina Liszewska,
  • Bogusław Budner,
  • Małgorzata Norek,
  • Bartłomiej J. Jankiewicz and
  • Piotr Nyga

Beilstein J. Nanotechnol. 2019, 10, 1048–1055, doi:10.3762/bjnano.10.105

Graphical Abstract
  • -structured surfaces made of glass [25][26], GaN [27][28][29], Si [30], TiO2 [31], Al2O3 [32], Ti [33], polymers [34], or planar surfaces coated with nano/microspheres resulting in metal film on nanospheres MFON [35][36], and Au nanocrescents on a monolayer of polystyrene nanospheres [37]. Additionally
PDF
Album
Full Research Paper
Published 15 May 2019

Tailoring the stability/aggregation of one-dimensional TiO2(B)/titanate nanowires using surfactants

  • Atiđa Selmani,
  • Johannes Lützenkirchen,
  • Kristina Kučanda,
  • Dario Dabić,
  • Engelbert Redel,
  • Ida Delač Marion,
  • Damir Kralj,
  • Darija Domazet Jurašin and
  • Maja Dutour Sikirić

Beilstein J. Nanotechnol. 2019, 10, 1024–1037, doi:10.3762/bjnano.10.103

Graphical Abstract
  • Zagreb, Croatia 10.3762/bjnano.10.103 Abstract The increased utilization of one-dimensional (1D) TiO2 and titanate nanowires (TNWs) in various applications was the motivation behind studying their stability in this work, given that stability greatly influences both the success of the application and the
  • . Keywords: 1D nanomaterials; cationic surfactants; stability; surface complexation model; titanate nanowires; Introduction Among the extensive variety of metal oxide nanomaterials, titanium dioxide nanomaterials (TNMs) (e.g., anatase, rutile, TiO2(B) and titanate) have attracted considerable attention
  • different solution and interfacial behavior compared to corresponding conventional monomeric surfactants [32][33][34]. The interaction of gemini surfactants with solid (nano)surfaces such as clay [35], calcium phosphate [36], silica [37][38][39][40], TiO2 [41], ZnO [42] and carbon NTs [43] have been
PDF
Album
Supp Info
Full Research Paper
Published 13 May 2019

Effects of gold and PCL- or PLLA-coated silica nanoparticles on brain endothelial cells and the blood–brain barrier

  • Aniela Bittner,
  • Angélique D. Ducray,
  • Hans Rudolf Widmer,
  • Michael H. Stoffel and
  • Meike Mevissen

Beilstein J. Nanotechnol. 2019, 10, 941–954, doi:10.3762/bjnano.10.95

Graphical Abstract
  • in cells that had been exposed to either PCL- or PLLA-NPs with PLLA-NPs eliciting a slightly more prominent effect. Compared to this, TiO2-NPs caused increases in phosphorylation of Akt and all three MAPKs followed by activation of NF-κB [36]. Guo et al. demonstrated that Si-NP exposure induced
PDF
Album
Full Research Paper
Published 25 Apr 2019

Comparing a porphyrin- and a coumarin-based dye adsorbed on NiO(001)

  • Sara Freund,
  • Antoine Hinaut,
  • Nathalie Marinakis,
  • Edwin C. Constable,
  • Ernst Meyer,
  • Catherine E. Housecroft and
  • Thilo Glatzel

Beilstein J. Nanotechnol. 2019, 10, 874–881, doi:10.3762/bjnano.10.88

Graphical Abstract
  • semiconductor TiO2 has become one of the most extensively studied metal oxides, especially in the context of scanning probe microscopy (SPM) [1]. The working principle of an n-type DSSC, which is shown in Figure 1a, relies on the functionalization of TiO2 surfaces with dye molecules enabling the absorption of
  • ) of the semiconductor [2]. This charge transfer, which occurs from the dye molecules towards the surface of the semiconductor, offers the possibility of designing specific hybrid devices with photoactive anodes consisting of functionalized TiO2. In contrast to TiO2 [3][4][5][6][7][8][9][10][11], wide
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2019

Rapid, ultraviolet-induced, reversibly switchable wettability of superhydrophobic/superhydrophilic surfaces

  • Yunlu Pan,
  • Wenting Kong,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 866–873, doi:10.3762/bjnano.10.87

Graphical Abstract
  • switching and extreme wettability changes upon ultraviolet (UV) illumination were investigated. TiO2 nanoparticles were modified in solutions of trimethoxy(alkyl)silane, and the suspensions were sprayed on glass substrates. For such samples, the water contact angle (WCA) was shown to transition from a
  • illumination can be confirmed. It was found that the presence of trimethoxy(alkyl)silane in the TiO2–trimethoxy(alkyl)silane coating served to speed up the super-wettability transition time from superhydrophobicity to superhydrophilicity, but also limited the number of wettability recycle times. With this
  • understanding, the effect of the trimethoxy(alkyl)silane concentration on the number of recycle cycles was investigated. Keywords: superhydrophilic surfaces; superhydrophobic surfaces; switchable wettability; TiO2; trimethoxy(alkyl)silane; UV illumination; Introduction Wettability is an important property of
PDF
Album
Full Research Paper
Published 15 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • , the catalyst of the SCR reaction, V2O5+WO3(MoO3)/TiO2, has some drawbacks, such as the toxic V-based material and the high operating temperature window (300–400 °C) [6][7][8]. Additionally, this kind of catalyst is easily influenced by ash and SO2, which makes it necessary to be installed downstream
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019

Novel reversibly switchable wettability of superhydrophobic–superhydrophilic surfaces induced by charge injection and heating

  • Xiangdong Ye,
  • Junwen Hou and
  • Dongbao Cai

Beilstein J. Nanotechnol. 2019, 10, 840–847, doi:10.3762/bjnano.10.84

Graphical Abstract
  • for converting superhydrophobic surfaces into superhydrophilic surfaces after only 10 min of ultraviolet irradiation. Gao et al. [6] prepared 18 alkyltrichlorosilane-modified TiO2 films for the reversible switching between superhydrophilicity and superhydrophobicity of a wood surface. Feng et al. [7
  • angle of 0°), and the reverse process took only 30 s. Esmeryan et al. [12] revealed collapsed superhydrophobicity and conversion to superhydrophilicity upon thermal annealing of the coating at temperatures above 300 °C. Lai et al. [13] prepared a uniform and stable TiO2-based nanoband film by
  • electrophoretic deposition. The transformation of hydrogen titanate to porous TiO2 (B) and anatase-type TiO2 completed the superhydrophilic–superhydrophobic transition but the process was unidirectional and irreversible. Jiang et al. [14] prepared cotton fabrics by a three-step method that comprised cotton
PDF
Album
Full Research Paper
Published 10 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • carbon nanofiber/TiO2 (Cu/CuO/PCNF/TiO2) composite uniformly covered with TiO2 nanoparticles was synthesized by electrospinning and a simple hydrothermal technique. The synthesized composite exhibits a unique morphology and excellent supercapacitive performance, including both electric double layer and
  • pseudo-capacitance behavior. Electrochemical measurements were performed by cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy. The highest specific capacitance value of 530 F g−1 at a current density of 1.5 A g−1 was obtained for the Cu/CuO/PCNF/TiO2 composite
  • nanoparticles, which together open up new opportunities for energy storage and conversion applications. Keywords: composite; electrochemical performance; porous carbon nanofiber; solid-state hybrid supercapacitor; supercapacitor; TiO2 nanoparticles; Introduction To meet the rapidly growing demand for energy
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019
Other Beilstein-Institut Open Science Activities