Search results

Search for "amorphous" in Full Text gives 478 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

High permittivity, breakdown strength, and energy storage density of polythiophene-encapsulated BaTiO3 nanoparticles

  • Adnanullah Khan,
  • Amir Habib and
  • Adeel Afzal

Beilstein J. Nanotechnol. 2020, 11, 1190–1197, doi:10.3762/bjnano.11.103

Graphical Abstract
  • , respectively, which is attributed to the interactions between β-hydrogens of PTh and oxygen atoms on the BTO surface. X-ray diffraction patterns of BTO, PTh, and core–shell BTO-PTh nanoparticles are presented in Figure 3. Pristine PTh is amorphous in nature and shows a low-intensity broad peak at around 23
  • °, which corresponds to the intermolecular π–π stacking structure and amorphous packing of the polymer [19]. The XRD pattern of hydrothermally prepared BTO nanoparticles shows good agreement with the tetragonal perovskite structure (JCPDS No. 05-0626) with the P4mm space group [20][21]. The major
PDF
Album
Full Research Paper
Published 10 Aug 2020

Revealing the local crystallinity of single silicon core–shell nanowires using tip-enhanced Raman spectroscopy

  • Marius van den Berg,
  • Ardeshir Moeinian,
  • Arne Kobald,
  • Yu-Ting Chen,
  • Anke Horneber,
  • Steffen Strehle,
  • Alfred J. Meixner and
  • Dai Zhang

Beilstein J. Nanotechnol. 2020, 11, 1147–1156, doi:10.3762/bjnano.11.99

Graphical Abstract
  • , Germany 10.3762/bjnano.11.99 Abstract Tip-enhanced Raman spectroscopy is combined with polarization angle-resolved spectroscopy to investigate the nanometer-scale structural properties of core–shell silicon nanowires (crystalline Si core and amorphous Si shell), which were synthesized by platinum
  • of the Raman peaks of crystalline Si and amorphous Si by applying tip-enhanced Raman spectroscopy, at sample positions being 8 nm apart. The local crystallinity revealed using confocal Raman spectroscopy and tip-enhanced Raman spectroscopy agrees well with the high-resolution transmission electron
  • orientational change due to laser-induced temperature variation [20]. Furthermore, crystalline (c-Si) and amorphous (a-Si) Si show different Raman peaks, which can be used to determine the fraction of crystallinity and bond-angle distortion [21][22]. For example, Nikolenko et al. [23] investigated the local
PDF
Album
Supp Info
Full Research Paper
Published 31 Jul 2020

Highly sensitive detection of estradiol by a SERS sensor based on TiO2 covered with gold nanoparticles

  • Andrea Brognara,
  • Ili F. Mohamad Ali Nasri,
  • Beatrice R. Bricchi,
  • Andrea Li Bassi,
  • Caroline Gauchotte-Lindsay,
  • Matteo Ghidelli and
  • Nathalie Lidgi-Guigui

Beilstein J. Nanotechnol. 2020, 11, 1026–1035, doi:10.3762/bjnano.11.87

Graphical Abstract
  • . The thermal treatment was carried out to induce both crystallization of the as-deposited amorphous TiO2 into the anatase phase (as discussed in [28][29]) and the formation of AuNPs exploiting dewetting of the Au films. A field-emission scanning electron microscope (FEG-SEM, Zeiss Supra 40) was used to
PDF
Album
Full Research Paper
Published 14 Jul 2020

Microwave-induced electric discharges on metal particles for the synthesis of inorganic nanomaterials under solvent-free conditions

  • Vijay Tripathi,
  • Harit Kumar,
  • Anubhav Agarwal and
  • Leela S. Panchakarla

Beilstein J. Nanotechnol. 2020, 11, 1019–1025, doi:10.3762/bjnano.11.86

Graphical Abstract
  • nanoparticles of Cu and Ni and one-dimensional nanorods of CuS, ZnF2, and NiF2 protected with fluorinated amorphous carbon. We have also synthesized reduced graphene oxide and partially rolled graphene by this method. Keywords: electric discharges; microwave synthesis; nanomaterials; transmission electron
  • of Cu, Ni, und Zn nanoparticles from metal particles. Also, we can control the morphology of the nanomaterials, which has not been achieved before. ZnF2, NiF2, and CuS nanorods covered with amorphous fluorinated carbon were synthesized. We have also extended this procedure to synthesize reduced
  • generated after 1 min of microwave treatment of activated Cu and Ni powders in the presence of g-C3N4. The patterns show pure phases of Ni and Cu. The formed nanoparticles are covered with fluorinated amorphous carbon. Figure 3b shows the SEM image of Cu nanoparticles covered with amorphous fluorinated
PDF
Album
Supp Info
Full Research Paper
Published 13 Jul 2020

Gas-sensing features of nanostructured tellurium thin films

  • Dumitru Tsiulyanu

Beilstein J. Nanotechnol. 2020, 11, 1010–1018, doi:10.3762/bjnano.11.85

Graphical Abstract
  • Dumitru Tsiulyanu CIMAN Research Centre of Department of Physics, Technical University, bul. Dacia 41, MD-2060 Chisinau, Moldova 10.3762/bjnano.11.85 Abstract Nanocrystalline and amorphous nanostructured tellurium (Te) thin films were grown and their gas-sensing properties were investigated at
  • the nanocrystalline films. This shortcoming could be solved by using the amorphous nanostructured Te films which, even at 22 °C, exhibited higher gas sensitivity and shorter response and recovery times by more than one order of magnitude in comparison to the nanocrystalline Te films. These results
  • aims of the present work were to investigate and improve the gas-sensing parameters of nanostructured Te films by using a mechanical nanostructuring approach. Crystalline and amorphous Te films were grown, respectively, on glass or porous, nanostructured, dielectric substrates. These two physically
PDF
Album
Full Research Paper
Published 10 Jul 2020

Nickel nanoparticles supported on a covalent triazine framework as electrocatalyst for oxygen evolution reaction and oxygen reduction reactions

  • Secil Öztürk,
  • Yu-Xuan Xiao,
  • Dennis Dietrich,
  • Beatriz Giesen,
  • Juri Barthel,
  • Jie Ying,
  • Xiao-Yu Yang and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2020, 11, 770–781, doi:10.3762/bjnano.11.62

Graphical Abstract
  • wt %), the characteristic broad reflections for amorphous CTF could also be seen. Size and morphology of the synthesized Ni NPs on CTFs were characterized by transmission electron microscopy (TEM) and SEM. Figure 2 shows TEM images of Ni/CTF-1-600-22 recorded at different magnifications. Ni
PDF
Album
Supp Info
Full Research Paper
Published 11 May 2020

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • shows an amorphous structure of the top ITO layer with a strong Ag(111) diffraction peak, showing that the Ag intermediate layer is crystalline, comparable to the work of Kim et al. [31]. There is no diffraction peak of the Al film, which is consistent with the work of Cho et al. [29]. The IAAI film
  • appear to be dominant without any traces of SnO2, Sn or SnO peaks. During deposition of the IAAI films, the kinetic energy of the sputtered atoms arriving at the substrate is low, which leads to the amorphous structure. The kinetic energy of the Ag atoms is higher and the Ag film crystallizes already
PDF
Album
Full Research Paper
Published 27 Apr 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • of the HTC-processed carbon particles in the range of 250 to 850 °C causes a loss of the photoluminescent characteristics of the CDs without any significant change in the microstructure (amorphous structure) of the carbon particles. The LA processing of the annealed HTC-processed carbon particles
  • the nanoparticles. The selected area electron diffraction (SAED) patterns embedded in the figures reveal that all the nanoparticles are amorphous. The EDS and XPS analyses of the HTC-CDs shown in Figure S1 and Table S1 in Supporting Information File 1 confirm that the main component of the HTC-CDs is
  • carbon. The annealing at the temperature of 850 °C did not cause the conversion of amorphous carbon nanoparticles to nanocrystals, and the LAL processing of the annealed-HTC carbon particles also produced amorphous carbon nanoparticles. The size distribution of the soybean-derived nanoparticles is
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • ], while platelet aggregation was observed for amorphous CNPs but not for the small-sized fullerenes [10]. Note however that limited information relating to the physicochemical properties of the materials was given in these studies, making a critical analysis of the results difficult. Moreover, while CNTs
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

High-performance asymmetric supercapacitor made of NiMoO4 nanorods@Co3O4 on a cellulose-based carbon aerogel

  • Meixia Wang,
  • Jing Zhang,
  • Xibin Yi,
  • Benxue Liu,
  • Xinfu Zhao and
  • Xiaochan Liu

Beilstein J. Nanotechnol. 2020, 11, 240–251, doi:10.3762/bjnano.11.18

Graphical Abstract
  • amorphous carbon. The five well-defined diffraction peaks appearing at 2θ values of 14.3, 25.3, 28.9, 33.7 and 53.9° are indexed to the (110), (112), (220), (222) and (422) crystal planes of NiMoO4, respectively, which well correspond to the standard pattern (JCPDS No. 45-0142). In addition to the
PDF
Album
Supp Info
Full Research Paper
Published 21 Jan 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • ]. Cristallinity Albertsson’s team published a study comparing semi-crystalline to amorphous vectors based on ε-caprolactone (CL), ʟ-lactide (LA) or ε-decalactone (DL) copolymers. All polymers formed micelles ranging from 25 to 60 nm but only those incorporating DL were amorphous. The study showed that the
  • critical aggregation concentration was higher for amorphous systems and that the loading of aniline pentamer was better in the amorphous vector [132][133]. A similar loading improvement in amorphous vectors for indomethacin was described by Alexander and co-workers [134]. Morphology/size Morphology
PDF
Album
Review
Published 15 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • Abstract Amorphous and graphitized nitrogen-doped (N-doped) carbon spheres are investigated as structurally well-defined model systems to gain a deeper understanding of the relationship between synthesis, structure, and their activity in the oxygen reduction reaction (ORR). N-doped carbon spheres were
  • temperatures. The overall nitrogen content of the graphitized N-doped carbon spheres is lower than that of the amorphous carbon spheres, however, also the microporosity decreases strongly with graphitization. Comparison with the electrocatalytic behavior in the ORR shows that in addition to the N-doping, the
  • microporosity of the materials is critical for an efficient ORR. Keywords: amorphous carbon; graphitized carbon; hydrothermal carbonization; nitridation; nitrogen doping; oxygen reduction reaction (ORR); porosity; Introduction Fuel cells and metal–air batteries are important renewable energy technologies
PDF
Album
Full Research Paper
Published 02 Jan 2020

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • approximately 15 nN, and the dislocations continue to nucleate in the region close to the fixed end. Besides the existing twin boundaries, a deformation twin could also be observed (Figure 8iii). The interaction of continuously nucleated dislocations will form an amorphous layer, similar to a grain boundary
  • . With the increased concentration of the deformations surface necking occurs, which will lead to the ductile fracture of the NW. Upon unloading, some dislocations may retract and annihilate at the free surface, which is promoted by the existing twin boundaries [31] and the amorphous atomic layer and
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Self-assembly of a terbium(III) 1D coordination polymer on mica

  • Quentin Evrard,
  • Giuseppe Cucinotta,
  • Felix Houard,
  • Guillaume Calvez,
  • Yan Suffren,
  • Carole Daiguebonne,
  • Olivier Guillou,
  • Andrea Caneschi,
  • Matteo Mannini and
  • Kevin Bernot

Beilstein J. Nanotechnol. 2019, 10, 2440–2448, doi:10.3762/bjnano.10.234

Graphical Abstract
  • . Initially, amorphous structures appeared on the surface that can be attributed to the gradual evaporation of solvent and moisture (Figure 2a). More interesting is the morphology observed after the aging of the samples under controlled moisture conditions. Needle-like objects (Figure 2b) with lengths of
  • tetragonal Si/Al atoms present on the (001) mica surface. Some disordered objects that are roughly 1.5 nm high are also present on the surface, which could be due to residual amorphous [Tb(hfac)3·2H2O] formed by a less controlled evaporation of the solvent in these areas. Under elevated moisture conditions
PDF
Album
Supp Info
Full Research Paper
Published 10 Dec 2019

Coating of upconversion nanoparticles with silica nanoshells of 5–250 nm thickness

  • Cynthia Kembuan,
  • Maysoon Saleh,
  • Bastian Rühle,
  • Ute Resch-Genger and
  • Christina Graf

Beilstein J. Nanotechnol. 2019, 10, 2410–2421, doi:10.3762/bjnano.10.231

Graphical Abstract
  • . Accordingly, the broad signal of the amorphous silica at 2θ = 20–25° becomes more dominant with increasing thickness of the silica shell. These data indicate that the crystal structure of the UCNP cores is not changed during the silica shell formation process. Figure 3 shows the upconversion luminescence (UCL
PDF
Album
Supp Info
Full Research Paper
Published 09 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • demonstrated that by adapting a two-step sequence, whereby amorphous Sb2S3 layers are first deposited by USP and then crystallized by thermal annealing, compact Sb2S3 thin films with uniform thickness can be fabricated [46]. Similarly, a two-step procedure to grow compact Sb2S3 thin films has become common
  • and back contact is needed to attain an AVT in excess of 20% for the complete solar cell. As-deposited Sb2S3 layers on glass/ITO/TiO2 substrate were amorphous (Figure 1d), as only signals of anatase-TiO2 and In2O3 from the substrate were detected by X-ray diffraction (XRD). In contrast, the XRD
  • pattern of the vacuum-annealed sample matched orthorhombic Sb2S3 (ICDD PDF 01-075-4012). The Raman spectrum of the as-deposited Sb2S3 layer contains two broad bands (Figure 1e), which are characteristic of amorphous Sb2S3 [28][46]. After vacuum annealing, characteristic narrower bands of Sb2S3 are
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • composite with both large surface area and high porosity for the use as advanced electrode material in lithium–sulfur batteries. Double modified defect-rich MoS2 nanosheets are successfully prepared by introducing reduced graphene oxide (rGO) and amorphous carbon. The conductibility of the cathodes can be
  • improved through the combination of amorphous carbon and rGO, which could also limit the dissolution of polysulfides. After annealing at different temperatures, it is found that the C-MoS2/rGO-6-S composite annealed at 600 °C yields a noticeably enhanced performance of lithium–sulfur batteries, with a high
  • adsorption of polysulfides [23][24]. However, the low conductivity of MoS2 often results in incomplete conversion of polysulfides. Thus, MoS2 is usually combined with carbon materials and annealing treatment is also considered [25][26]. Hence, double modification of defect-rich MoS2 nanosheets with amorphous
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

Targeted therapeutic effect against the breast cancer cell line MCF-7 with a CuFe2O4/silica/cisplatin nanocomposite formulation

  • B. Rabindran Jermy,
  • Vijaya Ravinayagam,
  • Widyan A. Alamoudi,
  • Dana Almohazey,
  • Hatim Dafalla,
  • Lina Hussain Allehaibi,
  • Abdulhadi Baykal,
  • Muhammet S. Toprak and
  • Thirunavukkarasu Somanathan

Beilstein J. Nanotechnol. 2019, 10, 2217–2228, doi:10.3762/bjnano.10.214

Graphical Abstract
  • < 0.001; **** p < 0.0001 versus control. N.S. indicates non-significant. Results and Discussion Figure 1 shows the PXRD patterns of 30 wt % CuFe2O4 loaded onto HYPS using the dry impregnation technique. The presence of broad peaks due to the amorphous nature of the siliceous framework of HYPS was observed
PDF
Album
Supp Info
Full Research Paper
Published 12 Nov 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • main phase. A large increase of the crystalline size and defective strain is responsible for the significant line broadening of the diffraction peaks. Still, no prevalent amorphous phase can be observed in the diffractograms. On this basis, the XRD results support the mixed occupancy of the cations in
  • both Cu and Sn atoms is observable only at the Sn K edge. This suggests that Sn is completely segregated in a CTS phase with a mixed occupancy at the tetrahedral sites (as suggested also by the PCA results). On the contrary, we cannot exclude that Cu may be present in an amorphous Cu(I) sulfide with Cu
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

High-tolerance crystalline hydrogels formed from self-assembling cyclic dipeptide

  • Yongcai You,
  • Ruirui Xing,
  • Qianli Zou,
  • Feng Shi and
  • Xuehai Yan

Beilstein J. Nanotechnol. 2019, 10, 1894–1901, doi:10.3762/bjnano.10.184

Graphical Abstract
  • focused on the amorphous assemblies in organic solvents and ionic liquids [42][43][44][45][46]. Although these CDP gels have good mechanical properties and deceased enzymatic degradation under physiological conditions, they still have some challenging problems such as inflexibility, low biosecurity and
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Fabrication and characterization of Si1−xGex nanocrystals in as-grown and annealed structures: a comparative study

  • Muhammad Taha Sultan,
  • Adrian Valentin Maraloiu,
  • Ionel Stavarache,
  • Jón Tómas Gudmundsson,
  • Andrei Manolescu,
  • Valentin Serban Teodorescu,
  • Magdalena Lidia Ciurea and
  • Halldór Gudfinnur Svavarsson

Beilstein J. Nanotechnol. 2019, 10, 1873–1882, doi:10.3762/bjnano.10.182

Graphical Abstract
  • obtain NCs embedded in an oxide matrix is by thermal annealing of multilayer structures. Several oxide matrices have been studied already [12][13][14][15][16][17][18], of which SiO2 is the most extensively studied as it remains amorphous up to high temperatures and due to its compatibility with Si-based
  • amorphous but with crystalline regions (nanoparticles) (as seen in TEM images later in Figure 5a and Figure 5c). With increased annealing temperature, peaks corresponding to the (111), (220) and (311) planes get sharper and narrower as a sign of increased crystallinity of the SiGe layer. Moreover, a small
  • consists of core–shell NCs/NPs with the core being Ge-rich Si1−xGex NCs (crystallographic peak (111) position, shifts from 27.87° to 27.75° for MLs in as-grown and annealed at 800 °C states, respectively) surrounded by a shell of crystalline Si in amorphous SiGeO. This behavior can be explained by phase
PDF
Album
Full Research Paper
Published 17 Sep 2019

Biocatalytic oligomerization-induced self-assembly of crystalline cellulose oligomers into nanoribbon networks assisted by organic solvents

  • Yuuki Hata,
  • Yuka Fukaya,
  • Toshiki Sawada,
  • Masahito Nishiura and
  • Takeshi Serizawa

Beilstein J. Nanotechnol. 2019, 10, 1778–1788, doi:10.3762/bjnano.10.173

Graphical Abstract
  • higher than those of the products in aqueous solution [42] (Table 1). The higher crystallinity with the organic solvents was attributed to the lower polydispersity in the DP, which would decrease the amount of the amorphous-like assembled structures of the terminal residues of relatively long oligomer
  • equation: where Icor is the corrected intensity, Iobs is the observed intensity, t is the X-ray transmittance through the sample, and Iblank is the intensity measured without any sample. The amorphous cellulose halo obtained previously [42] was fitted to the 1D profiles in 2θ ranges adequately selected
  • from 15–20° for each profile. The χc was estimated according to the following equation: where Ic(2θ) is the diffraction intensity from the crystalline phase, and I(2θ) is the intensity from both the crystalline and amorphous phases. For ATR-FTIR absorption spectroscopy, the lyophilized products in a
PDF
Album
Correction
Full Research Paper
Published 26 Aug 2019

Synthesis of nickel/gallium nanoalloys using a dual-source approach in 1-alkyl-3-methylimidazole ionic liquids

  • Ilka Simon,
  • Julius Hornung,
  • Juri Barthel,
  • Jörg Thomas,
  • Maik Finze,
  • Roland A. Fischer and
  • Christoph Janiak

Beilstein J. Nanotechnol. 2019, 10, 1754–1767, doi:10.3762/bjnano.10.171

Graphical Abstract
  • selected-area energy diffraction (SAED) are required. Presumably, due to the small size of the nanoparticles, these measurements yielded no diffractograms. Therefore, the nanoparticles can only be described as non-crystalline or amorphous. Quantification of EDX spectra from three different spots on the TEM
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • typical amorphous state with two weak diffraction peaks at about 25° and 48°, and the peaks of the Al3Ti and Al phases were absent, indicating almost complete dissolution of Al and the formation of amorphous TiO2. Figure 2b shows the Raman spectra of TiO2, GO and the TiO2/GO composite. The Raman spectrum
  • of as-dealloyed TiO2 is featureless due to its amorphous nature [36], and the GO alone shows the typical D- and G-bands at ≈1350 cm−1 and 1592 cm−1. Meanwhile, the composite displays the spectral characteristics of GO with two distinct peaks at ≈1343 cm−1 and 1580 cm−1. The slight shift in the
PDF
Album
Full Research Paper
Published 19 Aug 2019

Novel hollow titanium dioxide nanospheres with antimicrobial activity against resistant bacteria

  • Carol López de Dicastillo,
  • Cristian Patiño,
  • María José Galotto,
  • Yesseny Vásquez-Martínez,
  • Claudia Torrent,
  • Daniela Alburquenque,
  • Alejandro Pereira and
  • Juan Escrig

Beilstein J. Nanotechnol. 2019, 10, 1716–1725, doi:10.3762/bjnano.10.167

Graphical Abstract
  •  5. SPVP diffraction patterns showed a broad band with peak at 2θ equal to 20.3° (solid line) corresponding to the amorphous nature of the PVP polymer [30][31][32][33]. Because they were independent of the samples, the peaks at approximately 11.2, 30 and 40° corresponded to the noise baseline due to
  • amorphous materials, whose size varies between 1 nm and several hundreds of nanometers [42]. Figure 6 shows the I(q)–q plot (SAXS curve) of the CSTiO2 structures. Additionally, the q in the Figure 6 is the scattering vector and I(q) is the intensity of scattering, respectively. The SAXS data were analyzed
PDF
Album
Supp Info
Full Research Paper
Published 19 Aug 2019
Other Beilstein-Institut Open Science Activities