Search results

Search for "electronic" in Full Text gives 1079 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Exploring surface charge dynamics: implications for AFM height measurements in 2D materials

  • Mario Navarro-Rodriguez,
  • Andres M. Somoza and
  • Elisa Palacios-Lidon

Beilstein J. Nanotechnol. 2024, 15, 767–780, doi:10.3762/bjnano.15.64

Graphical Abstract
  • of surface charges and their intricate interaction with the tip. Keywords: 2D materials; incorrect height measurements; Joule dissipation; surface conductivity; tip influence; Introduction Two-dimensional (2D) materials have emerged as a promising platform for next-generation electronic devices [1
  • facilitates the creation of new heterostructures with tailored properties [15][16], making 2D materials suitable for different applications. Understanding the correlation between structural and topographical variations and their impact on mechanical [17][18], optical [19][20], magnetic [21][22], electronic
  • microscopy (AFM) techniques emerge as ideal tools to investigate them [26][27]. Depending on the operation mode and under controlled environmental conditions, AFM offers the possibility to record morphology along with relevant electronic, mechanical, or magnetic properties with nanoscale resolution. In
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2024

Green synthesis of biomass-derived carbon quantum dots for photocatalytic degradation of methylene blue

  • Dalia Chávez-García,
  • Mario Guzman,
  • Viridiana Sanchez and
  • Rubén D. Cadena-Nava

Beilstein J. Nanotechnol. 2024, 15, 755–766, doi:10.3762/bjnano.15.63

Graphical Abstract
  • the biomass source. Considering that the MB molecule contains azo bonds consisting of double bonds (–N=N–), it is possible to foresee a strong interaction with C–N groups on the surface of species M3 and M7. On the other hand, such C–N groups could cause a shift in the electronic energy states [43
PDF
Album
Full Research Paper
Published 25 Jun 2024

Effect of repeating hydrothermal growth processes and rapid thermal annealing on CuO thin film properties

  • Monika Ozga,
  • Eunika Zielony,
  • Aleksandra Wierzbicka,
  • Anna Wolska,
  • Marcin Klepka,
  • Marek Godlewski,
  • Bogdan J. Kowalski and
  • Bartłomiej S. Witkowski

Beilstein J. Nanotechnol. 2024, 15, 743–754, doi:10.3762/bjnano.15.62

Graphical Abstract
  • hydrothermal method ensures homogeneous single-phase films initially. However, their electrical instability and susceptibility to cracking under the influence of temperature have posed a challenge to their utilization in electronic devices. To address this limitation, the HT+RTA procedure has been developed
  • crystalline quality of the films. The implementation of the HT+RTA procedure significantly enhances the potential of CuO films for electronic applications. Key findings from Kelvin probe force microscopy analysis demonstrate the possibility of modulating the work function of the material. In addition
  • , scanning capacitance microscopy measurements provided information on the changes in the local carrier concentration with each repetition. These studies indicate the increased usefulness of CuO thin films obtained from the HT+RTA procedure, which expands the possibilities of their applications in electronic
PDF
Album
Full Research Paper
Published 24 Jun 2024

Level set simulation of focused ion beam sputtering of a multilayer substrate

  • Alexander V. Rumyantsev,
  • Nikolai I. Borgardt,
  • Roman L. Volkov and
  • Yuri A. Chaplygin

Beilstein J. Nanotechnol. 2024, 15, 733–742, doi:10.3762/bjnano.15.61

Graphical Abstract
  • Alexander V. Rumyantsev Nikolai I. Borgardt Roman L. Volkov Yuri A. Chaplygin National Research University of Electronic Technology - MIET, Bld. 1, Shokin Square, Zelenograd, Moscow, 124498, Russia 10.3762/bjnano.15.61 Abstract The evolution of a multilayer sample surface during focused ion beam
  • calculated ion trajectories for each angle θ was equal to 107. The electronic energy loss was described by the equipartition of Oen–Robinson [42] and Lindhard–Scharff [43] models. The atomic density of amorphous SiO2 was assumed as = 6.9·1022 cm−3 in accordance with [44]. Conclusion In this study, an
PDF
Album
Full Research Paper
Published 24 Jun 2024

Reduced subthreshold swing in a vertical tunnel FET using a low-work-function live metal strip and a low-k material at the drain

  • Kalai Selvi Kanagarajan and
  • Dhanalakshmi Krishnan Sadhasivan

Beilstein J. Nanotechnol. 2024, 15, 713–718, doi:10.3762/bjnano.15.59

Graphical Abstract
  • ); tunnel field-effect transistor (TFET); Introduction Rapid miniaturization of electronic devices has led to an increase in leakage current. Leakage current is a big challenge in miniaturized circuits. Miniaturization, at the same time, increased the device performance and reduced the area occupied by the
PDF
Album
Full Research Paper
Published 19 Jun 2024

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov and
  • Edgars Butanovs

Beilstein J. Nanotechnol. 2024, 15, 704–712, doi:10.3762/bjnano.15.58

Graphical Abstract
  • suitable for use on bendable and stretchable substrates in line with the current trends in electronic technologies focusing on flexible electronic device development [11][12]. Consequently, understanding the mechanical properties of β-Ga2O3 NWs becomes an important step. For instance, precise determination
PDF
Album
Supp Info
Full Research Paper
Published 18 Jun 2024

Gold nanomakura: nanoarchitectonics and their photothermal response in association with carrageenan hydrogels

  • Nabojit Das,
  • Vikas,
  • Akash Kumar,
  • Sanjeev Soni and
  • Raja Gopal Rayavarapu

Beilstein J. Nanotechnol. 2024, 15, 678–693, doi:10.3762/bjnano.15.56

Graphical Abstract
  • temperature [2]. The mean free path of an electron is influenced by shape/size of the metal nanoparticles which ultimately governs their physical, chemical, optical, magnetic, catalytic, and electronic properties [3]. All plasmonic metals exhibit optical phenomena over a range of electromagnetic radiation
PDF
Album
Supp Info
Full Research Paper
Published 07 Jun 2024

Laser synthesis of nanoparticles in organic solvents – products, reactions, and perspectives

  • Theo Fromme,
  • Sven Reichenberger,
  • Katharine M. Tibbetts and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2024, 15, 638–663, doi:10.3762/bjnano.15.54

Graphical Abstract
PDF
Album
Review
Published 05 Jun 2024

Directed growth of quinacridone chains on the vicinal Ag(35 1 1) surface

  • Niklas Humberg,
  • Lukas Grönwoldt and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2024, 15, 556–568, doi:10.3762/bjnano.15.48

Graphical Abstract
  • hydrogen bonds (H-bonds) [19] support the growth of long 1D chains of parallel oriented QA molecules, both in bulk crystals and on surfaces. It has been shown by Głowacki et al. that QA exhibits promising properties for applications in electronic and optoelectronic devices [20][21]. In particular, they
PDF
Album
Supp Info
Full Research Paper
Published 21 May 2024

Aero-ZnS prepared by physical vapor transport on three-dimensional networks of sacrificial ZnO microtetrapods

  • Veaceslav Ursaki,
  • Tudor Braniste,
  • Victor Zalamai,
  • Emil Rusu,
  • Vladimir Ciobanu,
  • Vadim Morari,
  • Daniel Podgornii,
  • Pier Carlo Ricci,
  • Rainer Adelung and
  • Ion Tiginyanu

Beilstein J. Nanotechnol. 2024, 15, 490–499, doi:10.3762/bjnano.15.44

Graphical Abstract
  • , Chisinau, Republic of Moldova Institute of Electronic Engineering and Nanotechnology „D. Ghitu”, Technical University of Moldova, Chisinau, Republic of Moldova Institute of Applied Physics, State University of Moldova, Chisinau, Republic of Moldova Department of Physics, University of Cagliari, Italy
  • phase content of the prepared aerogels by the duration of the technological procedure. A scheme of deep energy levels and electronic transitions in the ZnS skeleton of the aeromaterial was deduced from the PL analysis, suggesting that the produced aerogel is a potential candidate for photocatalytic and
  • pollutants from the atmosphere and from water, in other catalytic processes, including photocatalytic water splitting, in energy production and storage, in microfluidic systems, in drug delivery and other biomedical applications, in sensing, in electronic, photoelectronic, optoelectronic and nanophotonic
PDF
Album
Full Research Paper
Published 02 May 2024

Photocatalytic degradation of methylene blue under visible light by cobalt ferrite nanoparticles/graphene quantum dots

  • Vo Chau Ngoc Anh,
  • Le Thi Thanh Nhi,
  • Le Thi Kim Dung,
  • Dang Thi Ngoc Hoa,
  • Nguyen Truong Son,
  • Nguyen Thi Thao Uyen,
  • Nguyen Ngoc Uyen Thu,
  • Le Van Thanh Son,
  • Le Trung Hieu,
  • Tran Ngoc Tuyen and
  • Dinh Quang Khieu

Beilstein J. Nanotechnol. 2024, 15, 475–489, doi:10.3762/bjnano.15.43

Graphical Abstract
  • slight MB adsorption and decolourisation. The combination of GQDs and CoFe2O4 improves the decolourisation capacity significantly. Stacking CoFe2O4 crystals onto GQDs sheets not only prevents agglomeration but also creates heterojunction contacts or intermediate steps in the electronic structure. These
PDF
Album
Supp Info
Full Research Paper
Published 29 Apr 2024

Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems

  • Hsuan-Ang Tsai,
  • Tsai-Miao Shih,
  • Theodore Tsai,
  • Jhe-Wei Hu,
  • Yi-An Lai,
  • Jui-Fu Hsiao and
  • Guochuan Emil Tsai

Beilstein J. Nanotechnol. 2024, 15, 465–474, doi:10.3762/bjnano.15.42

Graphical Abstract
  • improve the bioavailability. In this study, for the first time, DCS, a highly water-soluble compound, has formed nanocrystals and this was confirmed by scanning electronic microscopy and X-ray powder diffraction. Furthermore, DCS nanocrystals were applied to several formulations to test their stability
  • ., Ltd.) for 10 min. The collection was vacuum-dried to obtain DCS nanocrystals. Characterization of DCS nanocrystals The DCS nanocrystals were analyzed via scanning electronic microscopy (SEM, JEOL Ltd.) and X-ray powder diffraction (XRPD, Bruker AXS GmbH). For SEM, commercial DCS was spreaded onto a
PDF
Album
Full Research Paper
Published 25 Apr 2024

Unveiling the nature of atomic defects in graphene on a metal surface

  • Karl Rothe,
  • Nicolas Néel and
  • Jörg Kröger

Beilstein J. Nanotechnol. 2024, 15, 416–425, doi:10.3762/bjnano.15.37

Graphical Abstract
  • ; scanning tunneling microscopy and spectroscopy; Introduction Defects in lattices of two-dimensional (2D) materials are considered as promising building blocks for tailoring electronic and phononic band structures, magnetic texture, photon emission, and charge carrier concentration [1]. In addition
  • , defects profoundly impact, in a beneficial or detrimental manner, characteristic properties of 2D materials [2]. A prominent 2D material is graphene. Intact graphene, the 2D sp2 arrangement of C atoms in a honeycomb mesh, is well known for its appealing electronic and mechanical properties [3][4]. However
  • ][14][15][16][17][18][19][20][21][22][23]. Even single missing C atoms were demonstrated to severely change electronic [11][13][14][18], mechanical [17], and magnetic [7][8][10][12] characteristics. It is therefore not surprising that the intentional creation of defects, which has mainly been achieved
PDF
Album
Supp Info
Full Research Paper
Published 15 Apr 2024

Investigating ripple pattern formation and damage profiles in Si and Ge induced by 100 keV Ar+ ion beam: a comparative study

  • Indra Sulania,
  • Harpreet Sondhi,
  • Tanuj Kumar,
  • Sunil Ojha,
  • G R Umapathy,
  • Ambuj Mishra,
  • Ambuj Tripathi,
  • Richa Krishna,
  • Devesh Kumar Avasthi and
  • Yogendra Kumar Mishra

Beilstein J. Nanotechnol. 2024, 15, 367–375, doi:10.3762/bjnano.15.33

Graphical Abstract
  • ) facility of the Inter University Accelerator Centre, New Delhi. The electronic and nuclear energy losses of 100 keV Ar+ inside Si and Ge were calculated using the SRIM software [39]. The electronic energy loss values were found to be 37.67 and 36.51 eV/Å for Si and Ge, respectively, and the nuclear energy
PDF
Album
Supp Info
Full Research Paper
Published 05 Apr 2024

Controllable physicochemical properties of WOx thin films grown under glancing angle

  • Rupam Mandal,
  • Aparajita Mandal,
  • Alapan Dutta,
  • Rengasamy Sivakumar,
  • Sanjeev Kumar Srivastava and
  • Tapobrata Som

Beilstein J. Nanotechnol. 2024, 15, 350–359, doi:10.3762/bjnano.15.31

Graphical Abstract
  • , film crystallinity and compositional variations in such films can also be adjusted as a function of the growth angle [27][28], making GLAD a promising approach to yield nanostructured (NS) films [29][30][31]. Electronic devices consisting of multilayers often require information on surface
  • concentration within a metal oxide film is known to influence its bandgap and work function values. As OV increases, there is a corresponding rise in electron concentration within the bandgap region, which results in the formation of certain localized electronic states associated with these vacancy defects
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2024

Investigating structural and electronic properties of neutral zinc clusters: a G0W0 and G0W0Г0(1) benchmark

  • Sunila Bakhsh,
  • Muhammad Khalid,
  • Sameen Aslam,
  • Muhammad Sohail,
  • Muhammad Aamir Iqbal,
  • Mujtaba Ikram and
  • Kareem Morsy

Beilstein J. Nanotechnol. 2024, 15, 310–316, doi:10.3762/bjnano.15.28

Graphical Abstract
  • /bjnano.15.28 Abstract The structural and electronic properties of zinc clusters (Znn) for a size range of n = 2–15 are studied using density functional theory. The particle swarm optimization algorithm is employed to search the structure and to determine the ground-state structure of the neutral Zn
  • literature to study the stability of these structures. We further assess the electronic properties, including the ionization potential, using the all-electron FHI-aims code employing G0W0 calculations, and the G0W0Г0(1) correction for a few smaller clusters, which provides a better estimation of the
  • decreases. Bulk zinc has metallic characteristics because of the overlap of the s and p orbitals. In the past, Zn clusters have been analyzed both experimentally and theoretically, where the studies were mainly conducted to determine the stability and electronic properties of the zinc cluster ground state
PDF
Album
Full Research Paper
Published 15 Mar 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • transition to a direct bandgap semiconductor with very high photoluminescence quantum yield when thinned down to a monolayer [13][14][15][16][17]. Its unique electronic and optical properties could provide an edge in many future applications. The multilayers MoS2 structures are of the most common 2Hc type
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

Ultrasensitive and ultrastretchable metal crack strain sensor based on helical polydimethylsiloxane

  • Shangbi Chen,
  • Dewen Liu,
  • Weiwei Chen,
  • Huajiang Chen,
  • Jiawei Li and
  • Jinfang Wang

Beilstein J. Nanotechnol. 2024, 15, 270–278, doi:10.3762/bjnano.15.25

Graphical Abstract
  • Shangbi Chen Dewen Liu Weiwei Chen Huajiang Chen Jiawei Li Jinfang Wang Shanghai Xin Yue Lian Hui Electronic Technology Co. Ltd, Shanghai, P.R. China Inertial Technology Division, Shanghai Aerospace Control Technology Institute, Shanghai, P.R. China Department of Nursing, Shanghai General Hospital
  • ; ultrahigh stretchability; Introduction In recent years, there has been significant advancement in the field of stretchable and soft electronic devices due to the increasing demand for their applications in various domains [1][2]. These applications include the detection of human motion [3][4][5
  • approach through the development of a strain sensor based on cracks with high stretchability, aiming to address the limitations of sensing range in soft electronic devices. Furthermore, this research provides a versatile framework for constructing strain sensors that exhibit both high sensitivity and
PDF
Album
Supp Info
Full Research Paper
Published 01 Mar 2024

Ion beam processing of DNA origami nanostructures

  • Leo Sala,
  • Agnes Zerolová,
  • Violaine Vizcaino,
  • Alain Mery,
  • Alicja Domaracka,
  • Hermann Rothard,
  • Philippe Boduch,
  • Dominik Pinkas and
  • Jaroslav Kocišek

Beilstein J. Nanotechnol. 2024, 15, 207–214, doi:10.3762/bjnano.15.20

Graphical Abstract
  • modalities [18]. The first type of irradiation, at energies above 1 MeV per nucleon, is an example of swift heavy ion (SHI) irradiation. SHI interaction with materials is dominated by electronic stopping power. Electronic excitation typically forms narrow (several nanometers in diameter) ionization tracks in
  • ion beam nanoprocessing? Heavy ions at medium energies (300 keV to 50 MeV) [29] are still interacting with materials by electronic excitation, but mostly at the beginning of their track. At the end of the track, the ions are predominantly slowed through nuclear stopping. These combined interaction
PDF
Album
Supp Info
Full Research Paper
Published 12 Feb 2024

Exploring disorder correlations in superconducting systems: spectroscopic insights and matrix element effects

  • Vyacheslav D. Neverov,
  • Alexander E. Lukyanov,
  • Andrey V. Krasavin,
  • Alexei Vagov,
  • Boris G. Lvov and
  • Mihail D. Croitoru

Beilstein J. Nanotechnol. 2024, 15, 199–206, doi:10.3762/bjnano.15.19

Graphical Abstract
  • effects have been implicated in the observed increase of the critical temperature in recently discovered NbSe2 superconducting monolayers [16]. Theoretical investigations attribute this enhancement to the disorder-induced multifractal structure of electronic wave functions [17][18], as revealed through
  • localization of Cooper pairs near the transition. In addition, in the presence of significant disorder, almost localized electronic wave functions show their fractal nature [50], which leads to an increase of the interaction matrix elements near the superconductor–insulator transition. This work elucidates how
PDF
Album
Full Research Paper
Published 12 Feb 2024

Graphene removal by water-assisted focused electron-beam-induced etching – unveiling the dose and dwell time impact on the etch profile and topographical changes in SiO2 substrates

  • Aleksandra Szkudlarek,
  • Jan M. Michalik,
  • Inés Serrano-Esparza,
  • Zdeněk Nováček,
  • Veronika Novotná,
  • Piotr Ozga,
  • Czesław Kapusta and
  • José María De Teresa

Beilstein J. Nanotechnol. 2024, 15, 190–198, doi:10.3762/bjnano.15.18

Graphical Abstract
  • Power Electrical and Electronic Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Technická 3082/12, Královo Pole, 61600, Brno, Czech Republic Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta Street, 30-059 Krakow
  • extraordinary mechanical and electronic properties. Although many years have passed since its discovery, manipulating single graphene layers is still challenging using standard resist-based lithography techniques. Recently, it has been shown that it is possible to etch graphene directly in water-assisted
  • advanced TEM cross-sectional analysis would be needed. Conclusion The feasibility of water-assisted FEBIE, available on scanning electron microscopes operating in low-vacuum mode, makes the method very promising for prototyping various optical/electronic devices based on graphene. In this work, we showed
PDF
Album
Full Research Paper
Published 07 Feb 2024

CdSe/ZnS quantum dots as a booster in the active layer of distributed ternary organic photovoltaics

  • Gabriela Lewińska,
  • Piotr Jeleń,
  • Zofia Kucia,
  • Maciej Sitarz,
  • Łukasz Walczak,
  • Bartłomiej Szafraniak,
  • Jerzy Sanetra and
  • Konstanty W. Marszalek

Beilstein J. Nanotechnol. 2024, 15, 144–156, doi:10.3762/bjnano.15.14

Graphical Abstract
  • CPE (CPE-T) is responsible for the polarization of the sample in various areas of the material structure and on the electrodes. The mechanisms of ionic or electronic conductivity are represented by the resistance R [54]. Substitute systems with nanodots QD520:P3HT:PC71BM, QD580:P3HT:PC71BM, and QD600
  • :P3HT:PC71BM are characterized by significantly lower resistance compared to P3HT:PC71BM, which may be responsible for the higher ionic or electronic conductivity of these layers. A similar effect was reported by Zhao et al. and Zang and co-workers [55][56]. Simulations and analyses of ternary OPVs The energy
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2024

Influence of conductive carbon and MnCo2O4 on morphological and electrical properties of hydrogels for electrochemical energy conversion

  • Sylwia Pawłowska,
  • Karolina Cysewska,
  • Yasamin Ziai,
  • Jakub Karczewski,
  • Piotr Jasiński and
  • Sebastian Molin

Beilstein J. Nanotechnol. 2024, 15, 57–70, doi:10.3762/bjnano.15.6

Graphical Abstract
  • the hydrogel contributes to the improvement of the electronic conductivity of weakly conductive electrocatalysts, such as metal oxides, ultimately affecting their catalytic efficiency and thus reducing the overpotential of the oxygen evolution reaction (OER) process [46]. In this work, we suspended
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2024

Measurements of dichroic bow-tie antenna arrays with integrated cold-electron bolometers using YBCO oscillators

  • Leonid S. Revin,
  • Dmitry A. Pimanov,
  • Alexander V. Chiginev,
  • Anton V. Blagodatkin,
  • Viktor O. Zbrozhek,
  • Andrey V. Samartsev,
  • Anastasia N. Orlova,
  • Dmitry V. Masterov,
  • Alexey E. Parafin,
  • Victoria Yu. Safonova,
  • Anna V. Gordeeva,
  • Andrey L. Pankratov,
  • Leonid S. Kuzmin,
  • Anatolie S. Sidorenko,
  • Silvia Masi and
  • Paolo de Bernardis

Beilstein J. Nanotechnol. 2024, 15, 26–36, doi:10.3762/bjnano.15.3

Graphical Abstract
  • - MC2, Chalmers University of Technology, 41296 Gothenburg, Sweden D. Ghitu Institute of Electronic Engineering and Nanotechnologies of Technical University of Moldova, MD-2028 Chisinau, Republic of Moldova Dipartimento di Fisica, Università La Sapienza, I-00185 Roma, Italy 10.3762/bjnano.15.3 Abstract
  • for the 240 GHz channel is 34.8 GHz, and the maximum absorption occurs at a frequency of 239.6 GHz. Fabrication of samples of receiving systems with CEBs The samples and the sample blanks with electronic lithography, ready for electron beam evaporation, were fabricated at the Chalmers University of
  • contact pads, DC lines, and antennas is made. The second electronic lithography step is used for the exposition of the bolometric layer. During photolithography, the first exposure was carried out with two photoresists. This is because the DC linewidth was 3 µm, and the use of a single photoresist would
PDF
Album
Full Research Paper
Published 04 Jan 2024

Fluorescent bioinspired albumin/polydopamine nanoparticles and their interactions with Escherichia coli cells

  • Eloïse Equy,
  • Jordana Hirtzel,
  • Sophie Hellé,
  • Béatrice Heurtault,
  • Eric Mathieu,
  • Morgane Rabineau,
  • Vincent Ball and
  • Lydie Ploux

Beilstein J. Nanotechnol. 2023, 14, 1208–1224, doi:10.3762/bjnano.14.100

Graphical Abstract
  • oxidation (Supporting Information File 1, Figure S2c). This may result from the conjugation and electronic density changes induced during the reaction with H2O2, during which hydroxy groups were oxidized into ketones. Eventually, the large majority of polydopamine functional groups are expected to be
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2023
Other Beilstein-Institut Open Science Activities