Search results

Search for "electrostatic interaction" in Full Text gives 111 result(s) in Beilstein Journal of Nanotechnology.

Molecular dynamics simulations of mechanical failure in polymorphic arrangements of amyloid fibrils containing structural defects

  • Hlengisizwe Ndlovu,
  • Alison E. Ashcroft,
  • Sheena E. Radford and
  • Sarah A. Harris

Beilstein J. Nanotechnol. 2013, 4, 429–440, doi:10.3762/bjnano.4.50

Graphical Abstract
  • in each of the two stacked β-sheets, we observe a correlation between the mean peak force and the intersheet electrostatic interaction energies (Table 1) that arise due to the unique packing arrangements of the monomer β-strands. The Class1-P polymorph has the most favourable electrostatic energy
  • favourable electrostatic interaction between the sheets of the three. The fact that the Class 6 polymorph is comprised of antiparallel β-sheets stacked in a parallel configuration places it intermediate between the other two. The correlation between the peak force and the electrostatic interfacial energy
PDF
Album
Full Research Paper
Published 04 Jul 2013

Dipole-driven self-organization of zwitterionic molecules on alkali halide surfaces

  • Laurent Nony,
  • Franck Bocquet,
  • Franck Para,
  • Frédéric Chérioux,
  • Eric Duverger,
  • Frank Palmino,
  • Vincent Luzet and
  • Christian Loppacher

Beilstein J. Nanotechnol. 2012, 3, 285–293, doi:10.3762/bjnano.3.32

Graphical Abstract
  • described in [9][19]), or is it due to the electrostatic interaction between the molecular dipole and the rows of charges present along the direction? The first question of whether the Moiré pattern is formed due to coincidences between the two quadratic lattices of the substrate cKCl and the molecules
PDF
Album
Full Research Paper
Published 27 Mar 2012

An NC-AFM and KPFM study of the adsorption of a triphenylene derivative on KBr(001)

  • Antoine Hinaut,
  • Adeline Pujol,
  • Florian Chaumeton,
  • David Martrou,
  • André Gourdon and
  • Sébastien Gauthier

Beilstein J. Nanotechnol. 2012, 3, 221–229, doi:10.3762/bjnano.3.25

Graphical Abstract
  • surface dipoles with a component pointing along the normal to the surface. These findings are interpreted with the help of numerical simulations. It is shown that the surface–molecule interaction is dominated by the electrostatic interaction of the cyano groups with the K+ ions of the substrate. The
  • equipped with six flexible propyl chains ending with dipolar CN groups. These groups were proven recently to behave as strong anchoring entities for a truxene derivative adsorbed on KBr(001) [10][11] due to their efficient electrostatic interaction with the K+ ions of the surface. Results Low coverage
  • bound to the surface by the electrostatic interaction between its CN groups and K+ ions. The flexibility of the propyl chains allows the molecule to reach five K+ ions. One of the chains cannot bind and its CN group stays at a larger distance from the surface (Figure 9b). The N atoms of the CN groups
PDF
Album
Full Research Paper
Published 12 Mar 2012

A measurement of the hysteresis loop in force-spectroscopy curves using a tuning-fork atomic force microscope

  • Manfred Lange,
  • Dennis van Vörden and
  • Rolf Möller

Beilstein J. Nanotechnol. 2012, 3, 207–212, doi:10.3762/bjnano.3.23

Graphical Abstract
  • ; tunneling current I = 60 pA. (a) Frequency-shift versus distance curve. The contribution from the long-range forces has been subtracted. The spectroscopy measurement was recorded with an oscillation amplitude of 2.8 Å and a bias voltage of 0.1 V to eliminate the electrostatic interaction. The black curves
PDF
Album
Full Research Paper
Published 08 Mar 2012

qPlus magnetic force microscopy in frequency-modulation mode with millihertz resolution

  • Maximilian Schneiderbauer,
  • Daniel Wastl and
  • Franz J. Giessibl

Beilstein J. Nanotechnol. 2012, 3, 174–178, doi:10.3762/bjnano.3.18

Graphical Abstract
  • used to track the probe over the surface at an elevated tip–sample distance. Thus, the short-range van der Waals force is kept constant, and any force change is caused by long-range interactions, including the magnetostatic interaction. To minimize the long-range electrostatic interaction we
PDF
Album
Letter
Published 29 Feb 2012

Self-assembled monolayers and titanium dioxide: From surface patterning to potential applications

  • Yaron Paz

Beilstein J. Nanotechnol. 2011, 2, 845–861, doi:10.3762/bjnano.2.94

Graphical Abstract
  • between SAMs on SiO2, on mica and on mica coated with ultrathin layers of SiO2. Here, it was found that the adsorption rate decreased with the width of the silica overlayer, and this result was explained by the increased shadowing of an electrostatic interaction between the negatively charged mica surface
PDF
Album
Review
Published 20 Dec 2011

Distinguishing magnetic and electrostatic interactions by a Kelvin probe force microscopy–magnetic force microscopy combination

  • Miriam Jaafar,
  • Oscar Iglesias-Freire,
  • Luis Serrano-Ramón,
  • Manuel Ricardo Ibarra,
  • Jose Maria de Teresa and
  • Agustina Asenjo

Beilstein J. Nanotechnol. 2011, 2, 552–560, doi:10.3762/bjnano.2.59

Graphical Abstract
  • ., they exhibit large surface potential differences causing heterogeneous electrostatic interaction between the tip and the sample that could be interpreted as a magnetic interaction. To distinguish clearly the origin of the tip–sample forces we propose to use a combination of Kelvin probe force
  • array of Co nanostructures that exhibit high electrostatic interaction with the MFM tip. Thanks to the use of the KPFM/MFM system we were able to separate the electric and magnetic interactions between the tip and the sample. Keywords: electrostatic interaction; focused electron beam induced deposition
  • Table 1. The values have been calculated using Equation 2 and Equation 3 and the equation in [30]. For the van der Waals forces we assume a tip radius of 30 nm and AH of about 10−19 J. The electrostatic interaction is calculated for a tip with an electrical radius slightly smaller due to the existence
PDF
Album
Supp Info
Full Research Paper
Published 07 Sep 2011

The role of the cantilever in Kelvin probe force microscopy measurements

  • George Elias,
  • Thilo Glatzel,
  • Ernst Meyer,
  • Alex Schwarzman,
  • Amir Boag and
  • Yossi Rosenwaks

Beilstein J. Nanotechnol. 2011, 2, 252–260, doi:10.3762/bjnano.2.29

Graphical Abstract
  • geometrical model x (tip or cantilever) can be expressed using the calculated expected potential: ; where is the averaged homogeneous force coefficient and is the nullifying force potential of the specific model x. Neglecting the mutual electrostatic interaction between the cantilever and the tip, the total
PDF
Album
Full Research Paper
Published 18 May 2011

Oriented growth of porphyrin-based molecular wires on ionic crystals analysed by nc-AFM

  • Thilo Glatzel,
  • Lars Zimmerli,
  • Shigeki Kawai,
  • Ernst Meyer,
  • Leslie-Anne Fendt and
  • Francois Diederich

Beilstein J. Nanotechnol. 2011, 2, 34–39, doi:10.3762/bjnano.2.4

Graphical Abstract
  • electrostatic field at the step edge result in a basic model of the wire formation as presented in Figure 1b, Figure 1c and Figure 1d. Single molecules are highly mobile at rt at the surface. Due to an electrostatic interaction between the dipole moments of the molecules and the enhanced periodic electrostatic
PDF
Album
Video
Full Research Paper
Published 13 Jan 2011

Single-pass Kelvin force microscopy and dC/dZ measurements in the intermittent contact: applications to polymer materials

  • Sergei Magonov and
  • John Alexander

Beilstein J. Nanotechnol. 2011, 2, 15–27, doi:10.3762/bjnano.2.2

Graphical Abstract
  • doubt that the electrostatic interaction of polar methanol molecules with fluroalkanes is responsible for these changes that initiate the structural transformation and small-scale surface transport on the substrate which is obvious from a comparison of the topography images shown in Figure 4. The
PDF
Album
Full Research Paper
Published 06 Jan 2011

Defects in oxide surfaces studied by atomic force and scanning tunneling microscopy

  • Thomas König,
  • Georg H. Simon,
  • Lars Heinke,
  • Leonid Lichtenstein and
  • Markus Heyde

Beilstein J. Nanotechnol. 2011, 2, 1–14, doi:10.3762/bjnano.2.1

Graphical Abstract
  • considered as a capacitor, resulting in the following equation for the electrostatic energy Eel, which together with the non-electrostatic interaction such as a Lennard-Jones potential adds to the total energy, [18][19] Echarge is the energy due to electrostatic charging and EVS is the work done by the
PDF
Album
Review
Published 03 Jan 2011
Other Beilstein-Institut Open Science Activities