Search results

Search for "etching" in Full Text gives 340 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • , NCS-1000 = 240 ± 30 nm; g-NCS-550 = 255 ± 35 nm, g-NCS-1000 = 220 ± 30 nm). This is due to the carbonization and decomposition processes taking place at higher reaction temperatures, together with H2 etching as side reaction of the ammonia nitriding [34]. The elemental bulk composition of the NCSs and
PDF
Album
Full Research Paper
Published 02 Jan 2020

Antimony deposition onto Au(111) and insertion of Mg

  • Lingxing Zan,
  • Da Xing,
  • Abdelaziz Ali Abd-El-Latif and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2019, 10, 2541–2552, doi:10.3762/bjnano.10.245

Graphical Abstract
  • small compartment filled with the same electrolyte and separated from main compartment by a capillary. Pt/Ir (90:10) STM tips with a diameter of 0.25 cm were prepared by etching in a 2 M KOH/4 M KSCN bath and coated with hot-melt glue containing different types of polymer (provided by Steinel) to
PDF
Album
Supp Info
Full Research Paper
Published 18 Dec 2019

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • etching. For instance, Chen et al. [8] employed an electrochemical etching method to fabricate nanocube structures on a Cu30Mn70 surface by controlling the voltage. In addition, Zhang et al. [10] showed that gold nanoparticles can be fabricated by a gold etchant on a silicon surface as SERS substrates
  • minutes in AgNO3 solution. When the etching time is increased, the clustering structures are gradually generated due to the increased dimension of Ag nanoparticles. Figure 2a shows SEM images of arrayed triangular cavities with fx = 2 μm and fy = 2 μm at an etching time of 10 minutes in AgNO3 solution
  • solution and Ag nanoparticles are formed on the different positions of the single crystal copper surface. The single crystal copper surface becomes rougher and more defects are formed after the etching process. Furthermore, the defects of the internal cavities and the pile-ups are much more than on the
PDF
Album
Full Research Paper
Published 13 Dec 2019

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • ], nanopillars in 4H-SiC formed by reactive ion etching (RIE) for the improvement of the VSi emission collection efficiency [50], and the use of a solid immersion lens (SIL) for an enhancement factor of three of single VSi [4]. Recent results of the successful enhancement of VSi in 4H-SiC based on nanopillars
  • . In particular N. Terrier for the UV photolithography, R. Mazurczyk for the ICP etching and S. Brottet for SEM imaging. We thank Mr. D. Stavrevski for the technical support with the confocal microscopes at the ARC Centre of Excellence for Nanoscale Biophotonics, School of Applied Science, RMIT
PDF
Album
Full Research Paper
Published 05 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • (LSNT). Pyramidal tips are made based on an indirect tip fabrication process [28] by etching a mould into a 380 µm thick single-side polished silicon (100) wafer. Figure 1a shows the summarized process flow, outlining the important steps. (i) A 20 nm LSNT thin film is layered onto a silicon (100) wafer
  • by low-pressure chemical vapor deposition. Circular openings (20 µm diameter) are then cut into the layer by electron-beam lithography. The LSNT mask is dry-etched before the moulds are structured by anisotropic KOH (40% at 60 °C) etching. The formation of {111} facets results in four-sided pyramidal
  • silicon oxide and the LSNT layers are patterned by photolithography to cover only the etched pits. (iv) Deep reactive ion etching (DRIE) is used to etch the silicon vertically and laterally (4 and 1 µm, respectively) in order to provide access for the SU8 polymer to fill the base of the tips in the
PDF
Album
Full Research Paper
Published 29 Nov 2019

Adsorption and desorption of self-assembled L-cysteine monolayers on nanoporous gold monitored by in situ resistometry

  • Elisabeth Hengge,
  • Eva-Maria Steyskal,
  • Rupert Bachler,
  • Alexander Dennig,
  • Bernd Nidetzky and
  • Roland Würschum

Beilstein J. Nanotechnol. 2019, 10, 2275–2279, doi:10.3762/bjnano.10.219

Graphical Abstract
  • ); voltammetry; Findings Nanoporous gold, produced by selective etching of the less noble component of a AuAg master alloy (also known as dealloying), is a very promising material in many applications due to its three-dimensional nanoporous structure. Among many other technological applications as sensing [1][2
PDF
Album
Letter
Published 18 Nov 2019

Nitrogen-vacancy centers in diamond for nanoscale magnetic resonance imaging applications

  • Alberto Boretti,
  • Lorenzo Rosa,
  • Jonathan Blackledge and
  • Stefania Castelletto

Beilstein J. Nanotechnol. 2019, 10, 2128–2151, doi:10.3762/bjnano.10.207

Graphical Abstract
  • contribution in these NDs is due to nearby nitrogen impurities rather than surface states. Improved ND NV center electron spin properties were obtained in [48] by a room-temperature near-field etching method. This is based on application of a He–Cd ultraviolet laser (325 nm), which has a longer wavelength than
PDF
Album
Review
Published 04 Nov 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • design through suited statistical analysis tools. Results: We have investigated the self-assembly bundling process of nanowires fabricated by metal-assisted chemical etching (MACE). First, we have applied theoretical models in order to obtain a quantitative estimation of the driving forces leading to
  • conditions and the capacity dimension of the nanowires was obtained. Keywords: atomic force microscopy (AFM); capillary force; metal-assisted chemical etching (MACE); multifractal analysis; nanoarchitectonics; nanowires; self-assembly; Introduction In the last years, huge progress was made regarding the
  • in the industry. The top-down methods involve the use of both dry [9][10] and wet etching [11] to carve nanostructures from a substrate. Metal-assisted chemical etching (MACE) [12][13][14][15] has gained particular attention in this regard, because it is simple, of low cost and versatile. MACE is an
PDF
Album
Full Research Paper
Published 31 Oct 2019

Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology

  • Loïc Crouzier,
  • Alexandra Delvallée,
  • Sébastien Ducourtieux,
  • Laurent Devoille,
  • Guillaume Noircler,
  • Christian Ulysse,
  • Olivier Taché,
  • Elodie Barruet,
  • Christophe Tromas and
  • Nicolas Feltin

Beilstein J. Nanotechnol. 2019, 10, 1523–1536, doi:10.3762/bjnano.10.150

Graphical Abstract
  • silicon wafers. The technique is based on using a direct-writing system (Raith-Vistec EBPG 5000+ electron-beam lithography system) and PMMA resist. After developing, the mask is transferred using RIE (reactive-ion etching). The P900H60 grating is used as a transfer standard and was calibrated by means of
  • -writing system and a PMMA resin in which various patterns are then made by reactive ion etching (RIE). Some tests were also carried out with lift-off techniques for metallic deposition, but the results were found to be less conclusive for the deposit. Results and Discussion Repeatability of AFM and SEM
PDF
Album
Full Research Paper
Published 26 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • calibration routine and the internal Au, Ag and Cu standards supplied with the K-Alpha system. Argon etching was done with ion gun (1.4 µA of 2 keV Ar+ ions over 8 mm2). The samples indented to be used in XPS and Auger were coated with an additional layer of SiO2 inside of the deposition chamber. This
  • protective layer of about 2 nm was sputtered away during measurements. However, the protection was unsuccessful. O2 and CO2 diffused in through to the film, which was proven by XPS measurements showing Li2O and Li2CO3 after etching. This is described below in Table 1 and discussed further in subsection
  • more pronounced after the removal of the top 2 nm of the sample surface through Ar etching during XPS measurements (Table 1). After etching, also the stoichiometry of CO3 becomes more clear, because signals from surface contaminations overlapping this signal in the C 1s spectrum, such as carboxyl
PDF
Album
Full Research Paper
Published 18 Jul 2019

A biomimetic nanofluidic diode based on surface-modified polymeric carbon nitride nanotubes

  • Kai Xiao,
  • Baris Kumru,
  • Lu Chen,
  • Lei Jiang,
  • Bernhard V. K. J. Schmidt and
  • Markus Antonietti

Beilstein J. Nanotechnol. 2019, 10, 1316–1323, doi:10.3762/bjnano.10.130

Graphical Abstract
  • nanotube membrane was immersed in 1 M acid for chemical etching (72 h), then cleaned by deionized water and dried in an oven at 60 °C. Modification: In a similar manner as described in our previous paper [39], 1 g of AHPA solution (40 wt % in water) and 1 g of deionized water were mixed (or 1 g of
PDF
Album
Supp Info
Full Research Paper
Published 27 Jun 2019

Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping

  • Lukas Grünewald,
  • Dagmar Gerthsen and
  • Simon Hettler

Beilstein J. Nanotechnol. 2019, 10, 1290–1302, doi:10.3762/bjnano.10.128

Graphical Abstract
  • phase masks Fabrication of SixNy membranes and aC film deposition A 200 µm thick Si wafer with 120 nm thick low-stress SixNy coating on both sides was used as base material. Optical lithography and etching methods for SixNy and Si were applied to produce free-standing SixNy thin films (Figure 1
  • ). Pyramid-shaped trenches are generated beneath the thin films by anisotropic wet-etching of Si in a heated KOH solution (KOH + H2O in a ratio of 2:3, 80 °C, Figure 1a,c). The lithography mask was designed such that a 3 × 3 array of square-shaped SixNy thin films was produced on a single wafer (Figure 1b,c
  • . Apertures and thickness profiles were structured with the Ga ion beam of a Helios G4 FX SEM/FIB dual-beam instrument (Thermo Fischer Scientific). The Ga ion energy was set to 30 keV in all applications. Samples after optical lithography and etching. (a) Scheme of side view of a single membrane. The sketch
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • solution of hydrogen silsesquioxane (HSQ). Subsequently, the upper 70 nm of the p-type segments of the NWs were uncovered by dry etching with CHF3 and a 120 nm thick indium tin oxide (ITO) layer was sputtered onto the NW tips. Finally, Ti/Au bonding pads and an Al/Au n-type contact were deposited on the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • recently, a technique for nanoscale and uniform surface etching of the carbon fiber surface was developed and a significant enhancement of the negative electrode reaction of vanadium redox flow batteries was attained, although the enhancement was limited to the positive electrode reaction. In this study
  • single heat-treatment step. The subsequent thermal oxidation concurrently achieved nanoscale surface etching and loading with SnO2 nanoparticles. The nanoscale-etched and SnO2-loaded surface was characterized by field-emission scanning electron microscopy (FESEM), Raman spectroscopy, and X-ray
  • nanoparticles; redox flow batteries; surface etching; Introduction Redox flow batteries (RFBs) are energy conversion and storage devices that involve the reduction and oxidation of electroactive species in electrolyte solutions and have attracted much attention due to their scalability and safety. Various
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Experimental study of an evanescent-field biosensor based on 1D photonic bandgap structures

  • Jad Sabek,
  • Francisco Javier Díaz-Fernández,
  • Luis Torrijos-Morán,
  • Zeneida Díaz-Betancor,
  • Ángel Maquieira,
  • María-José Bañuls,
  • Elena Pinilla-Cienfuegos and
  • Jaime García-Rupérez

Beilstein J. Nanotechnol. 2019, 10, 967–974, doi:10.3762/bjnano.10.97

Graphical Abstract
  • silsesquioxane (HSQ) resist layer. Then, the layout was transferred to the top 220 nm thick silicon layer of the SOI chip by means of inductively coupled plasma etching. 70 nm deep shallow etch 1D grating couplers were created for accessing the photonic chip. Finally, the chip is covered with a 400 nm thick SiO2
PDF
Album
Full Research Paper
Published 26 Apr 2019

Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation

  • Xiupei Yang,
  • Zhengli Yang,
  • Fenglin Tang,
  • Jing Xu,
  • Maoxue Zhang and
  • Martin M. F. Choi

Beilstein J. Nanotechnol. 2019, 10, 955–966, doi:10.3762/bjnano.10.96

Graphical Abstract
  • of the AuNCs can be improved to some extent by changing the ratio of the initial reactants (Au and ligand) and the synthesis conditions, or by other means such as heating [9], etching [10], and annealing [11], these methods are difficult to precisely control the size of the products. In addition, for
PDF
Album
Full Research Paper
Published 25 Apr 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • : materials and devices” covers the photo-electrochemical growth of platinum catalysts at plasmonic hot spots [6], the laser-assisted local growth of chalcopyrite absorbers [4], the preferential reactive ion etching of silicon by morphological anisotropies [5], the oxidation of copper nanoparticles resulting
PDF
Editorial
Published 26 Mar 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • element, oxygen, and an organic backbone, and are referred to as metal alkoxides or ‘metalcones’, e.g., alucones, zincones, and titanicones [2][4]. From the metal alkoxide produced with MLD, porous metal oxide thin films can be achieved through water etching or thermal treatments in the presence of oxygen
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

A porous 3D-RGO@MWCNT hybrid material as Li–S battery cathode

  • Yongguang Zhang,
  • Jun Ren,
  • Yan Zhao,
  • Taizhe Tan,
  • Fuxing Yin and
  • Yichao Wang

Beilstein J. Nanotechnol. 2019, 10, 514–521, doi:10.3762/bjnano.10.52

Graphical Abstract
  • (Figure 2a). After HF etching, a 3D-RGO@MWCNT was obtained (Figure 2b,c). The porous spherical indents (ca. 200 nm) remained after the removal of SiO2 (Figure 3a). Furthermore, after sulfur loading, both SEM (Figure 2d) and TEM (Figure 3b) images revealed that the structure remained in the resulting S-3D
  • reduction of GO, and v) SiO2 etching by HF. Firstly, monodispersed SiO2 spheres with diameters of 200–300 nm were prepared. After washing and drying, the SiO2 sphere particles was subsequently dispersed in DI water at a concentration of 50 mg·mL−1 (suspension A). Secondly, the GO from Hummer’s method was
PDF
Album
Supp Info
Full Research Paper
Published 21 Feb 2019

Widening of the electroactivity potential range by composite formation – capacitive properties of TiO2/BiVO4/PEDOT:PSS electrodes in contact with an aqueous electrolyte

  • Konrad Trzciński,
  • Mariusz Szkoda,
  • Andrzej P. Nowak,
  • Marcin Łapiński and
  • Anna Lisowska-Oleksiak

Beilstein J. Nanotechnol. 2019, 10, 483–493, doi:10.3762/bjnano.10.49

Graphical Abstract
  • of such defected crystal structures. Also, the assumption that all nanotubes have the same size is a huge simplification. It could be also estimated by weight measurements of the electrode before and after chemical etching of the TiO2 nanotubes, e.g., using HF. However, selective detaching of
PDF
Album
Full Research Paper
Published 15 Feb 2019

Reduced graphene oxide supported C3N4 nanoflakes and quantum dots as metal-free catalysts for visible light assisted CO2 reduction

  • Md Rakibuddin and
  • Haekyoung Kim

Beilstein J. Nanotechnol. 2019, 10, 448–458, doi:10.3762/bjnano.10.44

Graphical Abstract
  • nanoflakes are converted to quantum dots is around 170 °C (Figure 7). With an increase of temperature from 130 to 170 °C, the particle size starts to become smaller, and at above 170 °C, QDs are predominantly formed. When a g-C3N4 nanosheet is subjected to acid etching followed by long term (10–20 h
  • subjected to acid etching followed by hydrothermal treatment to obtain 0D g-C3N4 QDs [19]. In brief, the g-C3N4 nanosheets (0.5 g) were oxidized with concentrated H2SO4 (50 mL) and HNO3 (100 mL) for 4 h under ultrasonication. A clear solution was formed, which was diluted with deionized (DI) water (100 mL
PDF
Album
Supp Info
Full Research Paper
Published 13 Feb 2019

Improving control of carbide-derived carbon microstructure by immobilization of a transition-metal catalyst within the shell of carbide/carbon core–shell structures

  • Teguh Ariyanto,
  • Jan Glaesel,
  • Andreas Kern,
  • Gui-Rong Zhang and
  • Bastian J. M. Etzold

Beilstein J. Nanotechnol. 2019, 10, 419–427, doi:10.3762/bjnano.10.41

Graphical Abstract
  • types of carbides [19]). Commonly used graphitization catalysts are transitions metals such as Fe, Ni, and Co [18][21][22]. The conventional method for catalytic graphitization is to mix the non-porous carbide and metal catalyst precursor prior to the selective etching at high temperature. Indeed, the
PDF
Album
Supp Info
Full Research Paper
Published 11 Feb 2019

Effects of post-lithography cleaning on the yield and performance of CVD graphene-based devices

  • Eduardo Nery Duarte de Araujo,
  • Thiago Alonso Stephan Lacerda de Sousa,
  • Luciano de Moura Guimarães and
  • Flavio Plentz

Beilstein J. Nanotechnol. 2019, 10, 349–355, doi:10.3762/bjnano.10.34

Graphical Abstract
  • graphene device production yield, but impair the overall electronic performance of the devices. First photolithography step for the definition of the graphene structure: a) photoresist coating onto graphene; b) exposure of photoresist using direct laser writing; c) development of exposed areas; d) etching
PDF
Album
Full Research Paper
Published 05 Feb 2019

Geometrical optimisation of core–shell nanowire arrays for enhanced absorption in thin crystalline silicon heterojunction solar cells

  • Robin Vismara,
  • Olindo Isabella,
  • Andrea Ingenito,
  • Fai Tong Si and
  • Miro Zeman

Beilstein J. Nanotechnol. 2019, 10, 322–331, doi:10.3762/bjnano.10.31

Graphical Abstract
  • array. The standard manufacturing procedure of c-Si heterojunction solar cells was followed, with the only addition of a cost-effective mask-less reactive ion etching step to create nanowires on the surface of the p-type Si wafer. The resulting 5 × 5 mm2 cell exhibits a best-device efficiency of 11.8
  • characterisation The nanowire array was manufactured on a p-type mono-crystalline silicon wafer by reactive ion etching (RIE) using a gaseous mixture of SF6 and O2, followed by standard cleaning, rinsing in de-ionised water and drying of the substrate. In particular, the SF6/O2 plasma provides a continuous flow of
  • fluorine radicals (F*) and oxygen radicals O*, which feed two competing chemical reactions: F* and Si react to form SF4+ ions, while from the reaction of O* and Si a silicon oxyfluorine (SiOxFy) layer is formed. This layer acts as mask against F* etching, but is physically broken by sputtered ions
PDF
Album
Supp Info
Full Research Paper
Published 31 Jan 2019

Site-specific growth of oriented ZnO nanocrystal arrays

  • Rekha Bai,
  • Dinesh K. Pandya,
  • Sujeet Chaudhary,
  • Veer Dhaka,
  • Vladislav Khayrudinov,
  • Jori Lemettinen,
  • Christoffer Kauppinen and
  • Harri Lipsanen

Beilstein J. Nanotechnol. 2019, 10, 274–280, doi:10.3762/bjnano.10.26

Graphical Abstract
  • grow ZnO nanocrystals on both bare and on an array of pores patterned on the polymer-coated indium-doped tin oxide (ITO) conducting substrates. The patterning process for the polymer, poly(Disperse Red 1 acrylate), involves laser interference lithography and oxygen plasma etching and has been reported
PDF
Album
Full Research Paper
Published 24 Jan 2019
Other Beilstein-Institut Open Science Activities