Search results

Search for "hydrogen bonds" in Full Text gives 139 result(s) in Beilstein Journal of Nanotechnology.

First-principles study of the structure of water layers on flat and stepped Pb electrodes

  • Xiaohang Lin,
  • Ferdinand Evers and
  • Axel Groß

Beilstein J. Nanotechnol. 2016, 7, 533–543, doi:10.3762/bjnano.7.47

Graphical Abstract
  • neighboring water chains is 4.38 Å. This is too large for the formation of hydrogen bonds between the chains. So again, because of the large lattice constant of Pb, structural motifs that are stable on d-band metals turn out not to be stable on Pb(100). Because of the open stripe-like structure at 100
PDF
Album
Full Research Paper
Published 11 Apr 2016

3D solid supported inter-polyelectrolyte complexes obtained by the alternate deposition of poly(diallyldimethylammonium chloride) and poly(sodium 4-styrenesulfonate)

  • Eduardo Guzmán,
  • Armando Maestro,
  • Sara Llamas,
  • Jesús Álvarez-Rodríguez,
  • Francisco Ortega,
  • Ángel Maroto-Valiente and
  • Ramón G. Rubio

Beilstein J. Nanotechnol. 2016, 7, 197–208, doi:10.3762/bjnano.7.18

Graphical Abstract
  • also be built based on other intermolecular forces, for instance hydrogen bonds, acid–base reactions, covalent cross-linking and host–guest interactions [11][12]. Polyelectrolyte multilayers can be considered an example of non-equilibrium materials, because the corresponding soluble or insoluble
PDF
Album
Full Research Paper
Published 05 Feb 2016

Counterion effects on nano-confined metal–drug–DNA complexes

  • Nupur Biswas,
  • Sreeja Chakraborty,
  • Alokmay Datta,
  • Munna Sarkar,
  • Mrinmay K. Mukhopadhyay,
  • Mrinal K. Bera and
  • Hideki Seto

Beilstein J. Nanotechnol. 2016, 7, 62–67, doi:10.3762/bjnano.7.7

Graphical Abstract
  • through short-range interactions such as hydrogen bonds that dominating over the long-range but weak, screened Coulomb attraction. Due to this short-range interaction, the hydroxyl-terminated substrate prefers DNA molecules rather than the neutral metal–drug complex. On the other hand, at the surface, due
PDF
Album
Full Research Paper
Published 19 Jan 2016

Nanostructured surfaces by supramolecular self-assembly of linear oligosilsesquioxanes with biocompatible side groups

  • Maria Nowacka,
  • Anna Kowalewska and
  • Tomasz Makowski

Beilstein J. Nanotechnol. 2015, 6, 2377–2387, doi:10.3762/bjnano.6.244

Graphical Abstract
  • -acetylcysteine, cysteine hydrochloride or glutathione) can form specific, self-assembled nanostructures when deposited on mica by dip coating. The mechanism of adsorption is based on molecule-to-substrate interactions between carboxylic groups and mica. Intermolecular cross-linking by hydrogen bonds was also
  • . The COOH moieties in these polymers bind to the surface of native mica but the remaining polar groups can interact with neighbouring substituents (e.g., dimerization of COOH, or formation of amine salts (–COO−NH2+– and –COO−NH3+–)) and establish a network of hydrogen bonds. The slightly poorer
  • small molecules [49]. They should be simultaneously capable of the formation of surface salts and hydrogen bonds with functional groups in side chains of LPSQ-COOH/X. Consequently, thioglycolic acid (TG), citric acid (CA) and N-acetylcysteine (NAC) were selected and used as primers to modify the surface
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2015

Self-organization of gold nanoparticles on silanated surfaces

  • Htet H. Kyaw,
  • Salim H. Al-Harthi,
  • Azzouz Sellai and
  • Joydeep Dutta

Beilstein J. Nanotechnol. 2015, 6, 2345–2353, doi:10.3762/bjnano.6.242

Graphical Abstract
  • and deposition time [6]. To achieve NH2 groups as the interface between APTES molecule and nanoparticles is a major issue in silanization processes. During the self-assembly process, terminal amine (NH2) can be folded to form hydrogen bonds with free silanol groups, which leads to multilayer
  • type II) may create cross-linking of APTES molecules, which in turn would lead to lower availability of free amine terminal groups for a potential attachment of AuNPs. Another possible scenario (type III) is that hydrogen bonds may form between some of the amine functional groups and –OH from the
PDF
Album
Full Research Paper
Published 10 Dec 2015

Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules

  • Philipp Leinen,
  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2015, 6, 2148–2153, doi:10.3762/bjnano.6.220

Graphical Abstract
  • an Ag(111). Blue lines mark the expected positions of intermolecular hydrogen bonds. Red circles mark positions of carboxylic oxygen atoms that may be used for contacting the molecule by the tip. Here we only contact the oxygen atoms marked by solid circles. Scheme of the set-up used for HCM with a
PDF
Album
Supp Info
Full Research Paper
Published 16 Nov 2015

Light-powered, artificial molecular pumps: a minimalistic approach

  • Giulio Ragazzon,
  • Massimo Baroncini,
  • Serena Silvi,
  • Margherita Venturi and
  • Alberto Credi

Beilstein J. Nanotechnol. 2015, 6, 2096–2104, doi:10.3762/bjnano.6.214

Graphical Abstract
  • (linear) and cis-A (bent) units. The investigated strategy is shown in Figure 3. Because of the hydrogen bonds established between the molecular ring and the R unit located on the axle, a pseudorotaxane is formed in solution [29][30]. This process involves the passage of the ring on the trans-A unit
PDF
Album
Review
Published 02 Nov 2015

Fulleropeptide esters as potential self-assembled antioxidants

  • Mira S. Bjelaković,
  • Tatjana J. Kop,
  • Jelena Đorđević and
  • Dragana R. Milić

Beilstein J. Nanotechnol. 2015, 6, 1065–1071, doi:10.3762/bjnano.6.107

Graphical Abstract
  • and the control compound without the peptide moiety studied here, demonstrate the influence of hydrogen bonds and van der Waals interactions associated with the peptide moiety. This, together with the intermolecular, non-covalent π–π interactions of the fullerene moiety, affects the supramolecular
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • (Figure 14b). This could be related to a different orientation of water molecules in the double layer and a possible formation of hydrogen bonds to the OH groups of the surface oxide of the Si tip. (In principle, these tip approach curves should also reveal the above mentioned penetration of the tip into
PDF
Album
Full Research Paper
Published 26 Mar 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • helix of (Gly–Pro–Hyp)n peptides) is contrasted to ion association to chitin. The latter model was chosen as three poly-(1,4)-D-glucose chains of about 40 Å length (which corresponds to nine monomers) stacked in three layers, which are connected by hydrogen bonds. As a starting point, the association of
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

Size-dependent density of zirconia nanoparticles

  • Agnieszka Opalinska,
  • Iwona Malka,
  • Wojciech Dzwolak,
  • Tadeusz Chudoba,
  • Adam Presz and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2015, 6, 27–35, doi:10.3762/bjnano.6.4

Graphical Abstract
  • bonding. This result is opposed to the very broad and featureless –OD band typical for solvents (such as D2O) or fast-interchanging hydrogen bonds. The top spectra in Figure 4A and Figure 4C (corresponding to the unheated ZrO2 sample) clearly indicate the presence of such a broad, featureless –OD band
PDF
Album
Full Research Paper
Published 05 Jan 2015

SERS and DFT study of copper surfaces coated with corrosion inhibitor

  • Maurizio Muniz-Miranda,
  • Francesco Muniz-Miranda and
  • Stefano Caporali

Beilstein J. Nanotechnol. 2014, 5, 2489–2497, doi:10.3762/bjnano.5.258

Graphical Abstract
  • -transfer from molecule to metal with respect to the interaction with a neutral copper atom, about 0.5∙|e| versus 0.3∙|e|. Corrosion inhibition effect Considering the interaction of the molecule with the metal surface via the N4 atom, the possibility to form chains of adsorbed molecules linked by hydrogen
  • bonds exists, as proposed in Figure 9. This creates a compact, adsorbed triazole layer which can impair surface corrosion and explains the absence of the Raman bands at 530 and 620 cm−1 in the SERS spectrum, which would be due to the formation of a Cu(I) oxide multilayer (indicating the initial stage of
PDF
Album
Full Research Paper
Published 29 Dec 2014

Aquatic versus terrestrial attachment: Water makes a difference

  • Petra Ditsche and
  • Adam P. Summers

Beilstein J. Nanotechnol. 2014, 5, 2424–2439, doi:10.3762/bjnano.5.252

Graphical Abstract
  • ) diffusion, (iv) chemical bonding as ionic, covalent or hydrogen bonds, and (v) dispersive or van der Waals forces. While the first three mechanisms of adhesion presumably contribute just a minor part to general adhesion, the latter two are generally accepted as the primary mechanisms in many systems [19
PDF
Album
Review
Published 17 Dec 2014

Influence of the supramolecular architecture on the magnetic properties of a DyIII single-molecule magnet: an ab initio investigation

  • Julie Jung,
  • Olivier Cador,
  • Kevin Bernot,
  • Fabrice Pointillart,
  • Javier Luzon and
  • Boris Le Guennic

Beilstein J. Nanotechnol. 2014, 5, 2267–2274, doi:10.3762/bjnano.5.236

Graphical Abstract
  • hydrogen bonds play an important role in the modulation of the electrostatic environment around the DyIII center that governs the nature of its magnetic ground-state and the orientation of its anisotropy axes. We thus show here that SMM properties that rely on supramolecular organization may not be
  • temperature are found to be strongly influenced by supramolecular interactions. Moreover, taking into account the hydrogen-bond networks allows to explain the orientation of the magnetic axes. The computational results suggest that hydrogen bonds have an important influence on the modulation of the
  • χMT measured for Dy1 in the three orthogonal planes with the best fitted curves as solid lines. Representation of supramolecular interactions in Dy1. Dy, O, N, C, S and F atoms are depicted in light blue, red, blue, grey, yellow and green, respectively. H atoms (except the H atoms involved in hydrogen
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2014

Modification of a single-molecule AFM probe with highly defined surface functionality

  • Fei Long,
  • Bin Cao,
  • Ashok Khanal,
  • Shiyue Fang and
  • Reza Shahbazian-Yassar

Beilstein J. Nanotechnol. 2014, 5, 2122–2128, doi:10.3762/bjnano.5.221

Graphical Abstract
  • , such as hydrogen bonds, and non-specific interactions, such as van der Waals forces, where Fav is the total average adhesion force, nav is the average number of specific interactions, which is hydrogen bonding in our case, Fi is the magnitude of the specific interaction, and F0 is non-specific
  • : In order to verify the result of the modification, the probe was ramped over a glass slide with a monolayer of amino-terminated poly(ethylene glycol) (PEG) in isopropanol. The amino groups should form hydrogen bonds with the carboxylic acid group on the probe in the contacting period during ramping
  • . When the probe is retracted, the force to break the hydrogen bonds should be detectable. The force spectroscopy experiments were carried out in contact mode at room temperature in isopropanol. The spring constant of the AFM probes were calibrated by using the thermal noise method [30]. The measured
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2014

Effects of surface functionalization on the adsorption of human serum albumin onto nanoparticles – a fluorescence correlation spectroscopy study

  • Pauline Maffre,
  • Stefan Brandholt,
  • Karin Nienhaus,
  • Li Shang,
  • Wolfgang J. Parak and
  • G. Ulrich Nienhaus

Beilstein J. Nanotechnol. 2014, 5, 2036–2047, doi:10.3762/bjnano.5.212

Graphical Abstract
  • energy only corresponding to a few hydrogen bonds and, therefore, exhibit large-scale fluctuations at room temperature [56][57]. Thus, already fairly weak interactions can disturb or even unfold proteins. Depending on the details of the NP–protein interaction, a simple equilibrium binding model may in
PDF
Album
Full Research Paper
Published 07 Nov 2014

Patterning a hydrogen-bonded molecular monolayer with a hand-controlled scanning probe microscope

  • Matthew F. B. Green,
  • Taner Esat,
  • Christian Wagner,
  • Philipp Leinen,
  • Alexander Grötsch,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 1926–1932, doi:10.3762/bjnano.5.203

Graphical Abstract
  • manipulation with the molecule, since an individual carboxylic oxygen atom can bind the molecule to the SPM tip [12]. For a molecule residing within a compactly ordered monolayer, the same carboxylic groups are involved in hydrogen-bonds with the C–H side groups of neighbouring PTCDA molecules [10][11]. These
PDF
Album
Supp Info
Video
Full Research Paper
Published 31 Oct 2014

Non-covalent and reversible functionalization of carbon nanotubes

  • Antonello Di Crescenzo,
  • Valeria Ettorre and
  • Antonella Fontana

Beilstein J. Nanotechnol. 2014, 5, 1675–1690, doi:10.3762/bjnano.5.178

Graphical Abstract
  • functionalization of MWCNTs makes use of molecules that self-assemble around the nanotube forming supramolecular polymers. Llanes-Pallas et al. have shown that such a non-covalent solubilization can be realized by exploiting the formation of hydrogen bonds between the 2,6-di(acetylamino)pyridine and the imidic
  • uncoiled conformation in acidic or neutral pH, whereas ammonium groups deprotonate at pH higher than 9 [92]. Another example is the polymer poly(acrylic acid) used as CNT dispersant. Upon changing the pH of the aqueous solution its charges, its ability to form hydrogen bonds and conformations may vary thus
PDF
Album
Review
Published 30 Sep 2014

Ionic liquid-assisted formation of cellulose/calcium phosphate hybrid materials

  • Ahmed Salama,
  • Mike Neumann,
  • Christina Günter and
  • Andreas Taubert

Beilstein J. Nanotechnol. 2014, 5, 1553–1568, doi:10.3762/bjnano.5.167

Graphical Abstract
  • ][37]. This efficiency has mainly been attributed to the ability of the ILs to break hydrogen bonds, which is the key interaction stabilizing cellulose and chitin [34][38][39][40]. Moreover, ILs are efficient reaction media for the synthesis of new and interesting inorganic materials [35][41][42][43
PDF
Album
Full Research Paper
Published 16 Sep 2014

DNA origami deposition on native and passivated molybdenum disulfide substrates

  • Xiaoning Zhang,
  • Masudur Rahman,
  • David Neff and
  • Michael L. Norton

Beilstein J. Nanotechnol. 2014, 5, 501–506, doi:10.3762/bjnano.5.58

Graphical Abstract
  • ordered array. These results are of crucial importance, as they support the hypothesis that the van der Waals interaction between MoS2 and the DNA in the origami is of sufficient strength to destabilize the hydrogen bonds as well as the π–π stacking interactions in the relatively short duplex regions
PDF
Album
Supp Info
Full Research Paper
Published 22 Apr 2014

Morphological characterization of fullerene–androsterone conjugates

  • Alberto Ruiz,
  • Margarita Suárez,
  • Nazario Martin,
  • Fernando Albericio and
  • Hortensia Rodríguez

Beilstein J. Nanotechnol. 2014, 5, 374–379, doi:10.3762/bjnano.5.43

Graphical Abstract
  • appendage of these monoadducts, may be responsible of the difference size between both diastereomeric pairs, considering the different strength of the hydrogen bonds between these groups and water. Similar behavior has been observed in C60 monoadducts with one or two hydrophilic heads [19][20][21][22]. For
PDF
Album
Supp Info
Full Research Paper
Published 28 Mar 2014

Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy

  • Hao Liang,
  • Guanghong Zeng,
  • Yinli Li,
  • Shuai Zhang,
  • Huiling Zhao,
  • Lijun Guo,
  • Bo Liu and
  • Mingdong Dong

Beilstein J. Nanotechnol. 2014, 5, 365–373, doi:10.3762/bjnano.5.42

Graphical Abstract
  • isopropanol instead of water. Xanthan likely forms more hydrogen bonds in water than in isopropanol, and therefore the stiffness measured in isopropanol should be less than that in water. The discrepancy of measured persistence length between our study and the previous study could also suggest that the
PDF
Album
Full Research Paper
Published 27 Mar 2014

Some reflections on the understanding of the oxygen reduction reaction at Pt(111)

  • Ana M. Gómez-Marín,
  • Ruben Rizo and
  • Juan M. Feliu

Beilstein J. Nanotechnol. 2013, 4, 956–967, doi:10.3762/bjnano.4.108

Graphical Abstract
  • through the water network, because of the necessary similar molecular composition of this intermediate and water, which would enable the formation of hydrogen bonds. It is important to remark that the formation of this soluble intermediate is dependent on the potential, i.e., at low ω, the aforementioned
PDF
Album
Full Research Paper
Published 27 Dec 2013

Large-scale atomistic and quantum-mechanical simulations of a Nafion membrane: Morphology, proton solvation and charge transport

  • Pavel V. Komarov,
  • Pavel G. Khalatur and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 567–587, doi:10.3762/bjnano.4.65

Graphical Abstract
PDF
Album
Full Research Paper
Published 26 Sep 2013

Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications

  • Mikhail S. Kondratenko,
  • Igor I. Ponomarev,
  • Marat O. Gallyamov,
  • Dmitry Y. Razorenov,
  • Yulia A. Volkova,
  • Elena P. Kharitonova and
  • Alexei R. Khokhlov

Beilstein J. Nanotechnol. 2013, 4, 481–492, doi:10.3762/bjnano.4.57

Graphical Abstract
  • level of several phosphoric acid molecules per PBI monomer unit. Only one PA molecule is really bound to the protonated N-atom, the other molecules are retained by hydrogen bonds. This acid–base bonding requires an immobilized proton to be excluded from the proton transport. In contrast, the direct
PDF
Album
Full Research Paper
Published 21 Aug 2013
Other Beilstein-Institut Open Science Activities