Search results

Search for "impedance" in Full Text gives 177 result(s) in Beilstein Journal of Nanotechnology.

New 2D graphene hybrid composites as an effective base element of optical nanodevices

  • Olga E. Glukhova,
  • Igor S. Nefedov,
  • Alexander S. Shalin and
  • Мichael М. Slepchenkov

Beilstein J. Nanotechnol. 2018, 9, 1321–1327, doi:10.3762/bjnano.9.125

Graphical Abstract
  • : where Z0 is the characteristic impedance of free space and Jx is the x-component of the surface current density vector. The final expression obtained for the reflection and transmission coefficients, R and T, in the case of a p-polarized incident wave takes the following form: and in the case of s
  • -polarization where Z0 is defined for the p-polarized wave as Z0 = Ex/Hy = η·cosθ, and for the s-polarized wave as Z0 = −Ey/Hy = η/cosθ, where θ is the angle of incidence η = 120π Ω is the input impedance of vacuum. Taking into account expressions for the reflection and transmission coefficients, is it possible
PDF
Album
Letter
Published 30 Apr 2018

Ag2WO4 nanorods decorated with AgI nanoparticles: Novel and efficient visible-light-driven photocatalysts for the degradation of water pollutants

  • Shijie Li,
  • Shiwei Hu,
  • Wei Jiang,
  • Yanping Liu,
  • Yu Liu,
  • Yingtang Zhou,
  • Liuye Mo and
  • Jianshe Liu

Beilstein J. Nanotechnol. 2018, 9, 1308–1316, doi:10.3762/bjnano.9.123

Graphical Abstract
  • impedance spectroscopy (EIS) measurement was applied to study the charge transport and separation [49]. A smaller arc radius commonly signifies a higher charge transport rate. As displayed in Figure 10, the arc radius of 0.3AgI/Ag2WO4 is smaller than that of AgI, suggesting that 0.3AgI/Ag2WO4 holds a higher
  • RhB in the presence of 0.3AgI/Ag2WO4. (a) The cycled photocatalytic degradation of RhB over 0.3AgI/Ag2WO4; (b) XRD patterns of the fresh and used 0.3AgI/Ag2WO4. Active-species trapping tests over 0.3AgI/Ag2WO4. Electrochemical impedance spectroscopy (EIS) Nyquist plots of AgI and 0.3AgI/Ag2WO4
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2018

Cyclodextrin inhibits zinc corrosion by destabilizing point defect formation in the oxide layer

  • Abdulrahman Altin,
  • Maciej Krzywiecki,
  • Adnan Sarfraz,
  • Cigdem Toparli,
  • Claudius Laska,
  • Philipp Kerger,
  • Aleksandar Zeradjanin,
  • Karl J. J. Mayrhofer,
  • Michael Rohwerder and
  • Andreas Erbe

Beilstein J. Nanotechnol. 2018, 9, 936–944, doi:10.3762/bjnano.9.86

Graphical Abstract
  • . This work uses electrochemical impedance spectroscopy to show the cyclic oligosaccharide β-cyclodextrin (β-CD) to inhibit corrosion of zinc in 0.1M chloride with an inhibition efficiency of up to 85%. Only a monomolecular adsorption layer of β-CD is present on the surface of the oxide covered metal
  • inhibitors [8][12][13]. Metallic zinc is industrially used for cathodic protection of steel [15]. In this work, the inhibition of zinc corrosion by β-CD was investigated electrochemically. Inhibition efficiencies were determined by electrochemical impedance spectroscopy (EIS). After exposure to chloride
  • potential in a frequency range from 104 to 10−1 Hz. The impedance spectra were fitted using the software ZView. The resulting impedance spectra and the equivalent circuit for data fitting are shown in Figure S2 (Supporting Information File 1). From EIS data, the corrosion current densities icorr were
PDF
Album
Supp Info
Full Research Paper
Published 20 Mar 2018

Facile synthesis of ZnFe2O4 photocatalysts for decolourization of organic dyes under solar irradiation

  • Arjun Behera,
  • Debasmita Kandi,
  • Sanjit Manohar Majhi,
  • Satyabadi Martha and
  • Kulamani Parida

Beilstein J. Nanotechnol. 2018, 9, 436–446, doi:10.3762/bjnano.9.42

Graphical Abstract
  • band-edge potential, a mechanism of the photocatalytic reaction has been proposed which is discussed later. Electrochemical impedance study Impedance measurements are commonly used to determine the charge transfer, resistance, and effective charge separation processes occurring at electrode–electrolyte
PDF
Album
Full Research Paper
Published 05 Feb 2018

Design of polar self-assembling lactic acid derivatives possessing submicrometre helical pitch

  • Alexej Bubnov,
  • Cyril Vacek,
  • Michał Czerwiński,
  • Terezia Vojtylová,
  • Wiktor Piecek and
  • Věra Hamplová

Beilstein J. Nanotechnol. 2018, 9, 333–341, doi:10.3762/bjnano.9.33

Graphical Abstract
  • permittivity was measured during cooling using a Schlumberger 1260 impedance analyser in the frequency range of 10 Hz–1 MHz, keeping the temperature of the sample stable during frequency sweeps within ±0.1 K. Differential scanning calorimetry (DSC) plot of heating/cooling runs (indicated by horizontal arrows
PDF
Album
Full Research Paper
Published 29 Jan 2018

Synthesis and characterization of electrospun molybdenum dioxide–carbon nanofibers as sulfur matrix additives for rechargeable lithium–sulfur battery applications

  • Ruiyuan Zhuang,
  • Shanshan Yao,
  • Maoxiang Jing,
  • Xiangqian Shen,
  • Jun Xiang,
  • Tianbao Li,
  • Kesong Xiao and
  • Shibiao Qin

Beilstein J. Nanotechnol. 2018, 9, 262–270, doi:10.3762/bjnano.9.28

Graphical Abstract
  • electrodes were evaluated by cyclic voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS). The electrochemical characteristics of the cells with S/MoO2–CNF cathodes and pure sulfur cathodes were examined by CV in the voltage range of 1.7–3.0 V at the scanning rate
  • effect of the MoO2–CNF matrix material calcined at different temperatures on the electrochemical performance of the sulfur cathode. Compared to the CV technique, the diffusion coefficients under equilibrium conditions can be expressed by electrochemical impedance spectroscopy (EIS). Additionally, the
  • steep sloping line in the low-frequency region, corresponding to the Warburg impedance, was represented by W0. The fitting results are listed in Table 4. Obviously, the S/MoO2–CNF cathodes possessed lower charge transfer resistance than pure sulfur cathodes, indicating better charge transfer between the
PDF
Album
Supp Info
Full Research Paper
Published 24 Jan 2018

Electrical properties of a liquid crystal dispersed in an electrospun cellulose acetate network

  • Doina Manaila Maximean,
  • Octavian Danila,
  • Pedro L. Almeida and
  • Constantin Paul Ganea

Beilstein J. Nanotechnol. 2018, 9, 155–163, doi:10.3762/bjnano.9.18

Graphical Abstract
  • techniques, such as polarized optical microscopy, dielectric spectroscopy and impedance measurements. Dielectric constant and electric energy loss were studied as a function of frequency and temperature. The activation energy was evaluated and the relaxation time was obtained by fitting the spectra of the
  • dielectric loss with the Havriliak–Negami functions. To determine the electrical characteristics of the studied samples, impedance measurements results were treated using the Cole–Cole diagram and the three-element equivalent model. Keywords: cellulose nanocomposite; dielectric spectroscopy; impedance
  • fitted to the Havriliak–Negami [37] model and further modelled by the Vogel–Fulcher–Tammann law. In addition to this, impedance spectroscopy measurements were performed, and the results were processed using a simple equivalent circuit model, that permits the extraction of electric circuit parameters
PDF
Album
Full Research Paper
Published 15 Jan 2018

Facile synthesis of silver/silver thiocyanate (Ag@AgSCN) plasmonic nanostructures with enhanced photocatalytic performance

  • Xinfu Zhao,
  • Dairong Chen,
  • Abdul Qayum,
  • Bo Chen and
  • Xiuling Jiao

Beilstein J. Nanotechnol. 2017, 8, 2781–2789, doi:10.3762/bjnano.8.277

Graphical Abstract
  • 4.8-fold faster than that of the bare AgSCN, so the existence of an appropriate amount of Ag played a prominent role in the photodegradation process. Electrochemical impedance spectrum (EIS) was used to illustrate the rate of charge transfer for the photocatalysts. Nyquist plots of M0, M1, M2, M3, M4
  • source. N2 adsorption–desorption isotherms were determined by using a Quadrasorb SI apparatus to obtain the Brunauer–Emmett–Teller (BET) surface area. Electrochemical impedance spectroscopy (EIS) was recorded on a CHI660A electrochemical workstation (CH Instrument Company, Shanghai, China
PDF
Album
Supp Info
Full Research Paper
Published 22 Dec 2017

Beyond Moore’s technologies: operation principles of a superconductor alternative

  • Igor I. Soloviev,
  • Nikolay V. Klenov,
  • Sergey V. Bakurskiy,
  • Mikhail Yu. Kupriyanov,
  • Alexander L. Gudkov and
  • Anatoli S. Sidorenko

Beilstein J. Nanotechnol. 2017, 8, 2689–2710, doi:10.3762/bjnano.8.269

Graphical Abstract
  • resistance, which provide a high output impedance and a high voltage signal [86][87]. Both devices can be utilized as an interface [85][88][89] between superconductor circuit and CMOS electronics or memory depending on requirements to output signal and energy efficiency. It is well known that the major parts
PDF
Album
Review
Published 14 Dec 2017

One-step chemical vapor deposition synthesis and supercapacitor performance of nitrogen-doped porous carbon–carbon nanotube hybrids

  • Egor V. Lobiak,
  • Lyubov G. Bulusheva,
  • Ekaterina O. Fedorovskaya,
  • Yury V. Shubin,
  • Pavel E. Plyusnin,
  • Pierre Lonchambon,
  • Boris V. Senkovskiy,
  • Zinfer R. Ismagilov,
  • Emmanuel Flahaut and
  • Alexander V. Okotrub

Beilstein J. Nanotechnol. 2017, 8, 2669–2679, doi:10.3762/bjnano.8.267

Graphical Abstract
  • concentration of incorporated nitrogen. The hybrid materials were tested as electrodes in a 1M H2SO4 electrolyte and the best performance was found for a nitrogen-enriched material produced using the Fe/Mo catalyst. From the electrochemical impedance spectroscopy data, it was concluded that the nitrogen doping
  • reduces the resistance at the carbon surface/electrolyte interface and the nanotubes permeating the porous carbon provide fast charge transport in the cell. Keywords: bimetallic catalyst; electrochemical impedance spectroscopy; N-doped carbon; porous carbon–carbon nanotube hybrid; supercapacitor
  • composition of the obtained CNx hybrids were correlated with the data of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements in 1 M H2SO4 electrolyte. Experimental Synthesis Catalysts were prepared using polyoxomolybdate clusters of the ε-Keggin-type structure Mo12O28(μ2-OH
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2017

Enhanced photoelectrochemical water splitting performance using morphology-controlled BiVO4 with W doping

  • Xin Zhao and
  • Zhong Chen

Beilstein J. Nanotechnol. 2017, 8, 2640–2647, doi:10.3762/bjnano.8.264

Graphical Abstract
  • calculated from the electrochemical impedance measured in the dark. The carrier densities of W-doped BiVO4 with planar (0-water) and nanoporous (1-EG) structure were found to be 3.7·1020 cm−3 and 3.3·1020 cm−3, respectively. This indicates that the structure difference has little effect on the carrier
  • photocurrents with hole scavenger was measured in a 0.5 M Na2SO4 aqueous solution with 0.1 M Na2SO3. Electrochemical impedance spectroscopy (EIS) measurements were carried out under illumination of an AM 1.5G solar simulator in a 0.5 M Na2SO4 electrolyte at the applied potential of 1.23 V vs RHE using a PCI4
  • frequency of 1 kHz in 0.5 M Na2SO4 aqueous solution. (b) Electrochemical impedance spectra of W-doped BiVO4 with planar (0-water) and nanoporous (1-EG) structure at the applied potential of 1.23 V vs RHE under simulated solar illumination in 0.5 M Na2SO4 electrolyte. Inset is the equivalent circuit employed
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2017

Systematic control of α-Fe2O3 crystal growth direction for improved electrochemical performance of lithium-ion battery anodes

  • Nan Shen,
  • Miriam Keppeler,
  • Barbara Stiaszny,
  • Holger Hain,
  • Filippo Maglia and
  • Madhavi Srinivasan

Beilstein J. Nanotechnol. 2017, 8, 2032–2044, doi:10.3762/bjnano.8.204

Graphical Abstract
  • 0.1 C and discharge current varying from 0.1 to 3 C. Cycling voltammetry (CV) was performed in the range of 0.05 to 3.00 V with a sweep rate of 0.1 mV s−1 on a Solartron electrochemical workstation (1470E and SI 1255B impedance/gain-phase analyzer coupled with a potentiostat). Results and Discussion
PDF
Album
Supp Info
Full Research Paper
Published 28 Sep 2017

Bi-layer sandwich film for antibacterial catheters

  • Gerhard Franz,
  • Florian Schamberger,
  • Hamideh Heidari Zare,
  • Sara Felicitas Bröskamp and
  • Dieter Jocham

Beilstein J. Nanotechnol. 2017, 8, 1982–2001, doi:10.3762/bjnano.8.199

Graphical Abstract
  • involve measurement of the impedance of an incompletely isolating layer on top of an electrode. Applying AFM, the small areas of the surface can be scanned and evaluated regarding parameters like roughness and porosity. While the first parameter is the standard output of AFM and is displayed as 3D
  • is called electrical impedance spectroscopy (EIS) and is a widespread technique to evaluate the quality of coatings quantitatively. In contrast to the first method, larger areas can be easily tested, and a quantitative result is yielded, under the expense of spatial resolution. A simple
  • capacitance of the electrochemical double layer, Cdl. RΩ is the ohmic resistance of the solution of the electrolyte (Figure 11). To measure the impedance of the system the electrodes are connected to a HP 4192A Impedance Analyzer, which measures the impedance Z and the phase angle φ between test voltage and
PDF
Album
Full Research Paper
Published 22 Sep 2017

Freestanding graphene/MnO2 cathodes for Li-ion batteries

  • Şeyma Özcan,
  • Aslıhan Güler,
  • Tugrul Cetinkaya,
  • Mehmet O. Guler and
  • Hatem Akbulut

Beilstein J. Nanotechnol. 2017, 8, 1932–1938, doi:10.3762/bjnano.8.193

Graphical Abstract
  • specific capacity of the freestanding graphene/MnO2 cathodes was calculated depending on the active mass of the graphene/MnO2 composite (about 20 mg) on Al foil. The resistance of the electrodes was evaluated via electrochemical impedance spectroscopy (EIS) using a Nyquist curve in the frequency range 1000
  • the cell, electrochemical impedance spectroscopy (EIS) measurements were performed and results are shown in Figure 5. The width of the Nyquist curves indicates the charge transfer resistance (Rct) of the graphene/α-MnO2, graphene/β-MnO2 and graphene/γ-MnO2 cathodes [30]. As seen from Figure 5, the
PDF
Album
Full Research Paper
Published 14 Sep 2017

Optical techniques for cervical neoplasia detection

  • Tatiana Novikova

Beilstein J. Nanotechnol. 2017, 8, 1844–1862, doi:10.3762/bjnano.8.186

Graphical Abstract
PDF
Album
Review
Published 06 Sep 2017

Oxidative stabilization of polyacrylonitrile nanofibers and carbon nanofibers containing graphene oxide (GO): a spectroscopic and electrochemical study

  • İlknur Gergin,
  • Ezgi Ismar and
  • A. Sezai Sarac

Beilstein J. Nanotechnol. 2017, 8, 1616–1628, doi:10.3762/bjnano.8.161

Graphical Abstract
  • analyzer, and thermal studies are conducted by using thermogravimetric analysis. Electrochemical impedance spectroscopy, and cyclic voltammetry are used to investigate capacitive behavior of the products. The proposed equivalent circuit model was consistent with charge-transfer processes taking place at
  • (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical measurements were performed by using potentiostat 2263 Electrochemical Analyser (Princeton Applied Research, Tennessee, USA). EIS data were simulated with the electrical equivalent circuit by ZSimpWin V.3.10 analysis program
  • the low-temperature carbonization process with increasing elimination of other elements (N,H,O) [38][48]. Electrochemical impedance measurements of oxidized PAN nanofibers Electrochemical properties of oxidized PAN nanofibers were analyzed by using electrochemical impedance spectroscopy (EIS). EIS
PDF
Album
Full Research Paper
Published 07 Aug 2017

Parylene C as a versatile dielectric material for organic field-effect transistors

  • Tomasz Marszalek,
  • Maciej Gazicki-Lipman and
  • Jacek Ulanski

Beilstein J. Nanotechnol. 2017, 8, 1532–1545, doi:10.3762/bjnano.8.155

Graphical Abstract
  • of organic electronics. One of the early applications of Parylene C encapsulation layer in an electronic structure was that of a microelectrode insulator [65]. The Parylene C-covered iridium and tungsten microelectrodes were investigated by means of in vivo and in vitro impedance tests. In vitro
  • unchanged impedance of the microelectrodes protected by Parylene C layers has been recorded for over four months [66]. As another positive result, no destructive influence of the encapsulation material was observed when Parylene C had been employed to protect a pentacene OFET device, where no remarkable
PDF
Album
Review
Published 28 Jul 2017

Fabrication of hierarchically porous TiO2 nanofibers by microemulsion electrospinning and their application as anode material for lithium-ion batteries

  • Jin Zhang,
  • Yibing Cai,
  • Xuebin Hou,
  • Xiaofei Song,
  • Pengfei Lv,
  • Huimin Zhou and
  • Qufu Wei

Beilstein J. Nanotechnol. 2017, 8, 1297–1306, doi:10.3762/bjnano.8.131

Graphical Abstract
  • capability, which stemmed mostly from the hierarchically porous structure and the large specific surface area. Electrochemical impedance spectroscopy (EIS) was carried out on the electrode of sample A2 and solid TiO2 nanofibers. Nyquist impedance plots obtained for sample A2 and solid TiO2 nanofibers in a
  • presents CV curves and Nyquist impedance plots. Supporting Information File 76: Additional experimental data. Acknowledgements This research was financially supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, 111 Project (B17021), Six Talent Peaks Project in
PDF
Album
Supp Info
Full Research Paper
Published 22 Jun 2017

High photocatalytic activity of Fe2O3/TiO2 nanocomposites prepared by photodeposition for degradation of 2,4-dichlorophenoxyacetic acid

  • Shu Chin Lee,
  • Hendrik O. Lintang and
  • Leny Yuliati

Beilstein J. Nanotechnol. 2017, 8, 915–926, doi:10.3762/bjnano.8.93

Graphical Abstract
  • clarified using electrochemical impedance spectroscopy (EIS). Figure 5 shows the Nyquist plots of the unmodified TiO2 (NT) and Fe2O3(0.5)/TiO2 (PD) samples. The arc radius of the Nyquist plot reflects the impedance of the interface layer arising at the electrode surface. The smaller the arc radius the
  • better the charge transfer [37]. It is worth noting here that the Fe2O3(0.5)/TiO2 (PD) material has a smaller arc radius than unmodified TiO2. These results clearly suggest that the Fe2O3(0.5)/TiO2 (PD) material has a lower impedance than unmodified TiO2, indicating enhanced conductivity of TiO2 after
  • constant, A is the electrode area (cm2), Rct is the charge transfer resistance that can be obtained from the fitted Nyquist plot, and C° is the concentration of the redox couple in the bulk solution (ferricyanide/ferrocyanide) [38]. From the fitted impedance data shown in Figure 5, the Fe2O3(0.5)/TiO2 (PD
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2017

First examples of organosilica-based ionogels: synthesis and electrochemical behavior

  • Andreas Taubert,
  • Ruben Löbbicke,
  • Barbara Kirchner and
  • Fabrice Leroux

Beilstein J. Nanotechnol. 2017, 8, 736–751, doi:10.3762/bjnano.8.77

Graphical Abstract
  • -act X-ray detector. Prior to measurements the samples were coated with a 100 nm carbon layer using a POLARON CC7650 Carbon Coater. Electrochemical impedance spectroscopy (EIS). For EIS the dry IGs were contacted with a graphite paper layer and sandwiched between platinum electrodes. The graphite paper
  • of the samples, i.e., the conductivity and the dielectric behavior as given by the intercept of the curve with the x-axis and in the high frequency domain, respectively. Conductivity measurements were performed by the complex impedance method carried out with a Solartron 1174 frequency analyzer. The
  • frequency range was from 1 to 106 Hz and the temperature cycle was between 258 and 473 K as a cooling/heating/cooling sequence. The customary model using constant phase elements was applied to simulate the impedance spectra. After removal of the geometric capacitance of the cell, the impedance plots were
PDF
Album
Full Research Paper
Published 29 Mar 2017

Carbon nanotube-wrapped Fe2O3 anode with improved performance for lithium-ion batteries

  • Guoliang Gao,
  • Yan Jin,
  • Qun Zeng,
  • Deyu Wang and
  • Cai Shen

Beilstein J. Nanotechnol. 2017, 8, 649–656, doi:10.3762/bjnano.8.69

Graphical Abstract
  • oxygen levels of less than 0.1 ppm. The assembled cells were kept at room temperature for 12 h before electrochemical performance test Electrochemical performance of the assembled cells were then tested by galvanostatic charge/discharge measurements, cyclic voltammetry (CV) and electrochemical impedance
  • rate of 0.05 mV·s−1. Electrochemical impedance spectroscopy was carried out at a frequency range 10 mHz to 1 MHz with an AC amplitude of 10 mV. Both CV and EIS measurements were carried out on an electrochemical workstation (Ametek 1470E) Results and Discussion Figure 1a shows XRD spectra of Fe2O3/COOH
PDF
Album
Full Research Paper
Published 17 Mar 2017

Computing the T-matrix of a scattering object with multiple plane wave illuminations

  • Martin Fruhnert,
  • Ivan Fernandez-Corbaton,
  • Vassilios Yannopapas and
  • Carsten Rockstuhl

Beilstein J. Nanotechnol. 2017, 8, 614–626, doi:10.3762/bjnano.8.66

Graphical Abstract
  • -handed circularly polarized light. For the following considerations it is beneficial to introduce shortly the concept of duality symmetry. In free space, Maxwell’s equations are invariant under the transformation [47] where E is the electric field, H is the magnetic field, Z is the impedance and θ is an
PDF
Album
Correction
Full Research Paper
Published 14 Mar 2017

Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries

  • Chao Yan,
  • Qianru Liu,
  • Jianzhi Gao,
  • Zhibo Yang and
  • Deyan He

Beilstein J. Nanotechnol. 2017, 8, 222–228, doi:10.3762/bjnano.8.24

Graphical Abstract
  • electrochemical impedance spectra (EIS) was measured at the voltages of 2.6 V and 0.7 V and the Nyquist plots are shown in Figure 3b. At a voltage of 2.7 V, both CuO and Si were not lithiated and CuO could be totally lithiated at 0.7 V. The reduction in the semicircular nature in the Nyquist plot characteristics
  • (DEC) (1:1 in volume). Galvanostatic cycling was carried out on a multichannel cell test instrument (Neware BTS-610). Cyclic voltammogramms (CV) and electrochemical impedance spectra (EIS) were measured using an electrochemical workstation (Metrohm, Autolab302N). The voltage cut-off window for
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2017

Nanocrystalline TiO2/SnO2 heterostructures for gas sensing

  • Barbara Lyson-Sypien,
  • Anna Kusior,
  • Mieczylaw Rekas,
  • Jan Zukrowski,
  • Marta Gajewska,
  • Katarzyna Michalow-Mauke,
  • Thomas Graule,
  • Marta Radecka and
  • Katarzyna Zakrzewska

Beilstein J. Nanotechnol. 2017, 8, 108–122, doi:10.3762/bjnano.8.12

Graphical Abstract
  • heterojunctions for hydrogen sensing. Nanopowders of pure SnO2, 90 mol % SnO2/10 mol % TiO2, 10 mol % SnO2/90 mol % TiO2 and pure TiO2 have been obtained using flame spray synthesis (FSS). The samples have been characterized by BET, XRD, SEM, HR-TEM, Mössbauer effect and impedance spectroscopy. Gas-sensing
  • investigated by impedance spectroscopy (IS) in the temperature range from 20 to 550 °C in air. The impedance spectroscopy measurements were performed with a Solatron system (Fra 1260 + dielectric interface 1294). Experimental parameters and data acquisitions were controlled with the FRA software. A frequency
  • range from 1 to 106 Hz was covered, with 10 mV amplitude. The impedance spectra were analyzed using the ZView software. An equivalent circuit containing one resistor and a constant phase element (CPE) was used for fitting. In order to perform gas sensing measurements, the nanosensors were prepared in
PDF
Album
Full Research Paper
Published 12 Jan 2017

Sub-nanosecond light-pulse generation with waveguide-coupled carbon nanotube transducers

  • Felix Pyatkov,
  • Svetlana Khasminskaya,
  • Vadim Kovalyuk,
  • Frank Hennrich,
  • Manfred M. Kappes,
  • Gregory N. Goltsman,
  • Wolfram H. P. Pernice and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2017, 8, 38–44, doi:10.3762/bjnano.8.5

Graphical Abstract
  • transducers follows the electrical signal for a pulse width ranging from 5 to 200 ns, albeit deviations are clearly visible. The dips at the relative times of 25 and 75 ns, after the electrical bias was switched on, might originate from the impedance mismatch between the pulse generator output and the RF
  • signal along with a small bump at 0.4 ns occurs because of impedance mismatch. Funding R.K. and F.P. acknowledge funding by the Volkswagen Foundation. W.P. acknowledges support by the Deutsche Forschungsgemeinschaft (DFG) grants PE 1832/1-1 & PE 1832/2-1 and the Helmholtz Association through grant HIRG
PDF
Album
Full Research Paper
Published 05 Jan 2017
Other Beilstein-Institut Open Science Activities