Search results

Search for "instrumentation" in Full Text gives 134 result(s) in Beilstein Journal of Nanotechnology.

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • excitation [16] and interfere with the sample as it can cause photobleaching of fluorescence samples [17]. For specific applications and environments like vacuum, self-sensing tuning forks with manually attached tips can greatly simplify instrumentation but at the cost of reduced operation modes [18][19][20
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Exploiting the hierarchical morphology of single-walled and multi-walled carbon nanotube films for highly hydrophobic coatings

  • Francesco De Nicola,
  • Paola Castrucci,
  • Manuela Scarselli,
  • Francesca Nanni,
  • Ilaria Cacciotti and
  • Maurizio De Crescenzi

Beilstein J. Nanotechnol. 2015, 6, 353–360, doi:10.3762/bjnano.6.34

Graphical Abstract
  • ) for their courtesy of contact angle instrumentation. This project was financial supported by the European Office of Aerospace Research and Development (EOARD) through the Air Force Office of Scientific Research Material Command, USAF, under Grant No. FA9550-14-1-0047.
PDF
Album
Full Research Paper
Published 02 Feb 2015

Tailoring the ligand shell for the control of cellular uptake and optical properties of nanocrystals

  • Johannes Ostermann,
  • Christian Schmidtke,
  • Christopher Wolter,
  • Jan-Philip Merkl,
  • Hauke Kloust and
  • Horst Weller

Beilstein J. Nanotechnol. 2015, 6, 232–242, doi:10.3762/bjnano.6.22

Graphical Abstract
  • g/mol, using different excesses (C) during phase transfer (Figure reproduced with permission from [28]. Copyright 2014 Society of Photo Optical Instrumentation Engineers). Synthetic routes of the modified PI-b-PEG ligands. (a) succinic anhydride, THF; (b) 2-(boc-amino)ethyl bromide, THF; (c) 1-(3
PDF
Album
Supp Info
Review
Published 21 Jan 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • out on a rotating disc electrode (RDE) in a glove box in Ar atmosphere at ambient temperature. For the electrochemical setup, glassy carbon (Pine Research Instrumentation, electrode model no. AFE3T050GC) and carbon/catalyst-coated glassy carbon discs (see above) served as working electrodes. A
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • Adrian P. Nievergelt Jonathan D. Adams Pascal D. Odermatt Georg E. Fantner Laboratory for Bio- and Nano-Instrumentation, École Polytechnique Fédérale de Lausanne, Batiment BM 3109 Station 17, 1015 Lausanne, Switzerland 10.3762/bjnano.5.255 Abstract Multifrequency atomic force microscopy imaging
PDF
Album
Full Research Paper
Published 22 Dec 2014

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • cellular uptake (e). (Figure 1a,b,d,e modified with permission from [3], Copyright 2012 American Chemical Society; Figure 1c modified with permission from [4], Copyright 2009 Society of Photo Optical Instrumentation Engineers.) Skin penetration and cellular uptake of silver nanoparticles (AgNP). While
PDF
Album
Full Research Paper
Published 08 Dec 2014

Low cost, p-ZnO/n-Si, rectifying, nano heterojunction diode: Fabrication and electrical characterization

  • Vinay Kabra,
  • Lubna Aamir and
  • M. M. Malik

Beilstein J. Nanotechnol. 2014, 5, 2216–2221, doi:10.3762/bjnano.5.230

Graphical Abstract
  • (UV illumination) was observed. The reverse breakdown voltage of the fabricated device is very high (greater than 100 V). This was not evidenced here due to limitations in instrumentation. The reason for such a high breakdown voltage is attributed to the carrier concentration (1014 to 1015 cm−3) of
PDF
Album
Full Research Paper
Published 24 Nov 2014

Photodetectors based on carbon nanotubes deposited by using a spray technique on semi-insulating gallium arsenide

  • Domenico Melisi,
  • Maria Angela Nitti,
  • Marco Valentini,
  • Antonio Valentini,
  • Teresa Ligonzo,
  • Giuseppe De Pascali and
  • Marianna Ambrico

Beilstein J. Nanotechnol. 2014, 5, 1999–2006, doi:10.3762/bjnano.5.208

Graphical Abstract
  • the chemical, mechanical and electrical properties make CNTs also suitable to fabricate a wide range of radiation detectors for space applications, high energy physics and medical instrumentation [7][8][9]. The common technique obtain CNT films is chemical vapour deposition (CVD), but some deposition
PDF
Album
Full Research Paper
Published 05 Nov 2014

Cathode lens spectromicroscopy: methodology and applications

  • T. O. Menteş,
  • G. Zamborlini,
  • A. Sala and
  • A. Locatelli

Beilstein J. Nanotechnol. 2014, 5, 1873–1886, doi:10.3762/bjnano.5.198

Graphical Abstract
  • PEEM instrumentation. Backscattered electrons are collected by the objective lens (also known as cathode lens or immersion lens), of which the sample is part. The objective lens, which is the most important optical element of the microscope, accelerates the e-beam to an energy of several keV. The
PDF
Album
Review
Published 27 Oct 2014

A study on the consequence of swift heavy ion irradiation of Zn–silica nanocomposite thin films: electronic sputtering

  • Compesh Pannu,
  • Udai B. Singh,
  • Dinesh. C. Agarwal,
  • Saif A. Khan,
  • Sunil Ojha,
  • Ramesh Chandra,
  • Hiro Amekura,
  • Debdulal Kabiraj and
  • Devesh. K. Avasthi

Beilstein J. Nanotechnol. 2014, 5, 1691–1698, doi:10.3762/bjnano.5.179

Graphical Abstract
  • Compesh Pannu Udai B. Singh Dinesh. C. Agarwal Saif A. Khan Sunil Ojha Ramesh Chandra Hiro Amekura Debdulal Kabiraj Devesh. K. Avasthi Inter-University Accelerator Centre, Aruna Asaf Ali Marg, New Delhi 110067, India Institute Instrumentation Centre, Indian Institute of Technology, Roorkee 247667
  • angle of 170°. The sputtered particles collected on the catcher (TEM grids) were examined by TEM to determine the size distribution of the nanoparticles. TEM measurements were performed by using a 200 kV FEI TECHNAI 20 TEM at Institute Instrumentation Centre, Indian Institute of Technology, Roorkee
  • research fellowship. The authors are also thankful to Mr. Ravish Jain for his help during TEM measurements at Institute Instrumentation Centre, Indian Institute of Technology, Roorkee.
PDF
Album
Full Research Paper
Published 01 Oct 2014

Multi-frequency tapping-mode atomic force microscopy beyond three eigenmodes in ambient air

  • Santiago D. Solares,
  • Sangmin An and
  • Christian J. Long

Beilstein J. Nanotechnol. 2014, 5, 1637–1648, doi:10.3762/bjnano.5.175

Graphical Abstract
  • Figure 1 for an example of non-ideal amplitude vs frequency responses for different eigenmodes), signal processing instrumentation (higher eigenmodes have higher frequencies and require faster electronics as well as tip tracking systems with higher performance), and dynamic complexity [19][20][21][22
  • , multimodal imaging can be accomplished with similar equipment to that used for bimodal and trimodal methods [9], except that one needs to include a larger number of oscillation controllers according to the number of active eigenmodes. While the instrumentation is already available, the key open question is
PDF
Album
Full Research Paper
Published 25 Sep 2014

Methods for rapid frequency-domain characterization of leakage currents in silicon nanowire-based field-effect transistors

  • Tomi Roinila,
  • Xiao Yu,
  • Jarmo Verho,
  • Tie Li,
  • Pasi Kallio,
  • Matti Vilkko,
  • Anran Gao and
  • Yuelin Wang

Beilstein J. Nanotechnol. 2014, 5, 964–972, doi:10.3762/bjnano.5.110

Graphical Abstract
  • instrumentation amplifier. Cc and Rc are added to prevent oscillation in case Zx is highly capacitive. Excitation voltage scaling, power supplies, filtering, and additional amplifier stages are not included. The amplifier has a selectable gain of −1.1 mV/nA or −4.5 mV/nA. The bandwidth depends on the impedance to
PDF
Album
Full Research Paper
Published 04 Jul 2014

Integration of ZnO and CuO nanowires into a thermoelectric module

  • Dario Zappa,
  • Simone Dalola,
  • Guido Faglia,
  • Elisabetta Comini,
  • Matteo Ferroni,
  • Caterina Soldano,
  • Vittorio Ferrari and
  • Giorgio Sberveglieri

Beilstein J. Nanotechnol. 2014, 5, 927–936, doi:10.3762/bjnano.5.106

Graphical Abstract
  • coefficient of the entire thermoelectric device and of a single ZnO–CuO thermocouple and N = 5 the number of the elements which composes the thermoelectric device. The voltage ΔV has been amplified by means of a low-noise instrumentation amplifier INA111 with a gain of 100 for the characterization of both
PDF
Album
Full Research Paper
Published 30 Jun 2014

Calibration of quartz tuning fork spring constants for non-contact atomic force microscopy: direct mechanical measurements and simulations

  • Jens Falter,
  • Marvin Stiefermann,
  • Gernot Langewisch,
  • Philipp Schurig,
  • Hendrik Hölscher,
  • Harald Fuchs and
  • André Schirmeisen

Beilstein J. Nanotechnol. 2014, 5, 507–516, doi:10.3762/bjnano.5.59

Graphical Abstract
  • discrepancies between experimental calibration values and predictions from the shifted beam formula, which are related to a large variance in tip misalignment during the tuning fork assembling process. Keywords: atomic force microscopy; calibration; instrumentation; Introduction Atomic force microscopy (AFM
PDF
Album
Full Research Paper
Published 23 Apr 2014

Applicability and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents

  • Wolfgang M. Samhaber and
  • Minh Tan Nguyen

Beilstein J. Nanotechnol. 2014, 5, 476–484, doi:10.3762/bjnano.5.55

Graphical Abstract
  • quality of materials, instrumentation, control devices and process automation standards, etc.). As calculated in Table 2, the total operating cost will be 15,300 US$ (for 3,000 US$ membrane replacement cost) or 30,600 US$ (for 6,000 US$ MRC), respectively. With those figures we can calculate the treatment
PDF
Album
Full Research Paper
Published 15 Apr 2014

En route to controlled catalytic CVD synthesis of densely packed and vertically aligned nitrogen-doped carbon nanotube arrays

  • Slawomir Boncel,
  • Sebastian W. Pattinson,
  • Valérie Geiser,
  • Milo S. P. Shaffer and
  • Krzysztof K. K. Koziol

Beilstein J. Nanotechnol. 2014, 5, 219–233, doi:10.3762/bjnano.5.24

Graphical Abstract
  • (Air products, 99.995 %), into the reaction tube. The syringe was operated by the injection pump (Linton instrumentation, KD Scientific). A fused quartz reaction tube (silica, 99.99 %) of following dimensions: length 2000 mm, OD 17 mm, ID 14 mm was introduced into the furnace (Lenton Thermal Designs
PDF
Album
Supp Info
Full Research Paper
Published 03 Mar 2014

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
  • interaction while tuning its strength through a well-controlled single-molecule manipulation induced by the SPM tip [6][11][19][20][21][22]. Such experiments demand special instrumentation. It has been demonstrated that the recently developed experimental setups that combine low-temperature scanning tunneling
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

Constant-distance mode SECM as a tool to visualize local electrocatalytic activity of oxygen reduction catalysts

  • Michaela Nebel,
  • Thomas Erichsen and
  • Wolfgang Schuhmann

Beilstein J. Nanotechnol. 2014, 5, 141–151, doi:10.3762/bjnano.5.14

Graphical Abstract
  • quartz glass capillaries (length 95 mm, outside Ø 0.9 mm, inside Ø 0.3 mm) were from Quarzschmelze Illmenau (Illmenau, Germany). SECM instrumentation and tip preparation A specifically designed SECM setup was used for all experiments and the main components have been described previously [15]. The SECM
PDF
Album
Full Research Paper
Published 07 Feb 2014

Dynamic nanoindentation by instrumented nanoindentation and force microscopy: a comparative review

  • Sidney R. Cohen and
  • Estelle Kalfon-Cohen

Beilstein J. Nanotechnol. 2013, 4, 815–833, doi:10.3762/bjnano.4.93

Graphical Abstract
  • works [16][17][18][19] paved the way for two new point-probe nanomechanical testing devices which were developed in the 1980s – instrumented nanoindentation (INI, also known as depth-sensing instrumentation) [19][20] and atomic force microscopy (AFM, also known by the more general term of scanning probe
  • . Instrumentation Schematics of INI and AFM instruments are shown in Figure 2. Table 1 gives a comparison of their capabilities and characteristics. For INI, a calibrated force is applied to the indenter tip, which in turn is constrained with a vertical spring. The lateral spring constant can be considered infinite
PDF
Album
Review
Published 29 Nov 2013

Continuous parallel ESI-MS analysis of reactions carried out in a bespoke 3D printed device

  • Jennifer S. Mathieson,
  • Mali H. Rosnes,
  • Victor Sans,
  • Philip J. Kitson and
  • Leroy Cronin

Beilstein J. Nanotechnol. 2013, 4, 285–291, doi:10.3762/bjnano.4.31

Graphical Abstract
  • ® (Laboratory virtual instrumentation engineering workbench, a system design platform and development environment for a visual programming language from National Instruments) was used to write scripts controlling the speed and sequence of the pumps. To control the flow into the device and the overall residence
PDF
Album
Supp Info
Video
Full Research Paper
Published 29 Apr 2013

Determining cantilever stiffness from thermal noise

  • Jannis Lübbe,
  • Matthias Temmen,
  • Philipp Rahe,
  • Angelika Kühnle and
  • Michael Reichling

Beilstein J. Nanotechnol. 2013, 4, 227–233, doi:10.3762/bjnano.4.23

Graphical Abstract
  • demonstrate that the latter method is in particular useful for noncontact atomic force microscopy (NC-AFM) where the required simple instrumentation for spectral analysis is available in most experimental systems. Keywords: AFM; cantilever; noncontact atomic force microscopy (NC-AFM); Q-factor; thermal
PDF
Album
Full Research Paper
Published 28 Mar 2013
Graphical Abstract
  • type, instrumentation availability and user skill level. General appeal of frequency shift and relationship to phase contrast The first question that emerges when discussing AM-FM concerns the reasoning behind the use of FM-AFM, which has in the past been mostly reserved for vacuum operation, with a
  • environments, the use of increasingly smaller oscillation amplitudes leads to gradually increased dominance of the tip–sample forces in Equation 3, allowing the user to find optimum conditions that balance cantilever sensitivity with the ability of the instrumentation to detect changes in the signals. Figure 6
  • . Specifically, the controls on the spectroscopy eigenmode are significantly more complex and the instrumentation more expensive. In AM-OL this eigenmode is driven at constant amplitude and frequency but not controlled. In this case “simple” lock-in amplifiers are sufficient to rapidly measure oscillation
PDF
Album
Full Research Paper
Published 18 Mar 2013

High-resolution dynamic atomic force microscopy in liquids with different feedback architectures

  • John Melcher,
  • David Martínez-Martín,
  • Miriam Jaafar,
  • Julio Gómez-Herrero and
  • Arvind Raman

Beilstein J. Nanotechnol. 2013, 4, 153–163, doi:10.3762/bjnano.4.15

Graphical Abstract
  • tip and sample are important considerations for high-resolution imaging, the focus of this article is on the dAFM instrumentation. Specifically, we investigate the performance metrics for high-resolution imaging in dAFM, including (i) force sensitivity and resolution, (ii) detection bandwidth, (iii
PDF
Album
Full Research Paper
Published 27 Feb 2013

Towards 4-dimensional atomic force spectroscopy using the spectral inversion method

  • Jeffrey C. Williams and
  • Santiago D. Solares

Beilstein J. Nanotechnol. 2013, 4, 87–93, doi:10.3762/bjnano.4.10

Graphical Abstract
  • implementation of this procedure. Despite the unsolved challenges, the proposed approach could, in combination with future instrumentation and cantilever upgrades, enable studies in which rate-dependent phenomena, such as viscoelasticity and plasticity, are characterized in real time by using tapping-mode atomic
PDF
Album
Full Research Paper
Published 07 Feb 2013

Sub-10 nm colloidal lithography for circuit-integrated spin-photo-electronic devices

  • Adrian Iovan,
  • Marco Fischer,
  • Roberto Lo Conte and
  • Vladislav Korenivski

Beilstein J. Nanotechnol. 2012, 3, 884–892, doi:10.3762/bjnano.3.98

Graphical Abstract
  • transfer. The two promising techniques of nano-imprint lithography [16][17] and extreme-ultraviolet interference lithography [18] do indeed open sub-10 nm nanostructures for exploration. The instrumentation required, however, can in many cases be of great complexity and cost. Recently, membranes of nano
PDF
Album
Full Research Paper
Published 19 Dec 2012
Other Beilstein-Institut Open Science Activities