Search results

Search for "ion beam" in Full Text gives 214 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Localized growth of carbon nanotubes via lithographic fabrication of metallic deposits

  • Fan Tu,
  • Martin Drost,
  • Imre Szenti,
  • Janos Kiss,
  • Zoltan Kónya and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2017, 8, 2592–2605, doi:10.3762/bjnano.8.260

Graphical Abstract
  • well-defined configurations for building integrated systems for micro- and nanoelectronics. In this regard, classical methods like optical lithography (OL) [13] and electron beam lithography (EBL) [14], but also focused ion beam (FIB) processing [15], have been successfully applied to fabricate
PDF
Album
Supp Info
Full Research Paper
Published 05 Dec 2017

Interactions of low-energy electrons with the FEBID precursor chromium hexacarbonyl (Cr(CO)6)

  • Jusuf M. Khreis,
  • João Ameixa,
  • Filipe Ferreira da Silva and
  • Stephan Denifl

Beilstein J. Nanotechnol. 2017, 8, 2583–2590, doi:10.3762/bjnano.8.258

Graphical Abstract
  • . Experimental Since the used experimental setup was already described in detail elsewhere [27], only a short overview will be given. A double focussing two-sector-field mass spectrometer (VG ZAB2-SEQ) in Nier–Johnson geometry was used. The ion beam was produced in a standard Nier-type ion source. The chromium
PDF
Album
Full Research Paper
Published 04 Dec 2017

Direct writing of gold nanostructures with an electron beam: On the way to pure nanostructures by combining optimized deposition with oxygen-plasma treatment

  • Domagoj Belić,
  • Mostafa M. Shawrav,
  • Emmerich Bertagnolli and
  • Heinz D. Wanzenboeck

Beilstein J. Nanotechnol. 2017, 8, 2530–2543, doi:10.3762/bjnano.8.253

Graphical Abstract
  • widely utilized [8][9][10] due to the growing number of modern scanning electron microscopes (SEMs) which can be combined with focused ion beam (FIB) systems that are equipped with gas injection systems by default. Rather than being merely characterization instruments, such SEMs are now becoming
PDF
Album
Supp Info
Full Research Paper
Published 29 Nov 2017

Magnetic properties of optimized cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips

  • Soraya Sangiao,
  • César Magén,
  • Darius Mofakhami,
  • Grégoire de Loubens and
  • José María De Teresa

Beilstein J. Nanotechnol. 2017, 8, 2106–2115, doi:10.3762/bjnano.8.210

Graphical Abstract
  • observation in a specific geometry. Firstly, the cantilever pyramid tip is cut by focused ion beam (FIB) milling and lifted-out by a micromanipulator. Then, the cantilever tip is welded onto a TEM copper grid by a FIB-induced Pt deposition, as illustrated in Figure 3a. Then, the FEBID cobalt nanosphere is
PDF
Album
Supp Info
Full Research Paper
Published 09 Oct 2017

Intercalation of Si between MoS2 layers

  • Rik van Bremen,
  • Qirong Yao,
  • Soumya Banerjee,
  • Deniz Cakir,
  • Nuri Oncel and
  • Harold J. W. Zandvliet

Beilstein J. Nanotechnol. 2017, 8, 1952–1960, doi:10.3762/bjnano.8.196

Graphical Abstract
  • , whereas the rest is oxidized. Upon sputtering of the MoS2/Si sample with an Ar ion beam with 1 kV energy, we observe that the relative Si signal increases while the relative S signal decreases as can be seen in Figure S3 in Supporting Information File 1. This observation indicates that Si has intercalated
PDF
Album
Supp Info
Full Research Paper
Published 19 Sep 2017

Group-13 and group-15 doping of germanane

  • Nicholas D. Cultrara,
  • Maxx Q. Arguilla,
  • Shishi Jiang,
  • Chuanchuan Sun,
  • Michael R. Scudder,
  • R. Dominic Ross and
  • Joshua E. Goldberger

Beilstein J. Nanotechnol. 2017, 8, 1642–1648, doi:10.3762/bjnano.8.164

Graphical Abstract
  • measured using X-ray fluorescence on an Olympus X-5000 Mobile XRF System. SEM and EDX were performed using a FEI Helios Nanolab 600 dual beam focussed ion beam/scanning electron microscope. X-ray photoelectron spectroscopy was performed using a Kratos Axis ultra X-ray photoelectron spetrometer with a
PDF
Album
Full Research Paper
Published 09 Aug 2017

Growth, structure and stability of sputter-deposited MoS2 thin films

  • Reinhard Kaindl,
  • Bernhard C. Bayer,
  • Roland Resel,
  • Thomas Müller,
  • Viera Skakalova,
  • Gerlinde Habler,
  • Rainer Abart,
  • Alexey S. Cherevan,
  • Dominik Eder,
  • Maxime Blatter,
  • Fabian Fischer,
  • Jannik C. Meyer,
  • Dmitry K. Polyushkin and
  • Wolfgang Waldhauser

Beilstein J. Nanotechnol. 2017, 8, 1115–1126, doi:10.3762/bjnano.8.113

Graphical Abstract
  • focussed-ion-beam (FIB) prepared cross-sections of the PVD MoS2 films. According to the fit of the experimental XRR curves (not shown here) the surface roughness (σsurf) is ≈1.2 nm for the RT film and ≈0.6 nm for films deposited at 400 °C. While the σsurf of the RT films is consistent with the AFM results
  • incident angle of αi = 0.13° was chosen to enhance the scattered intensities of the adsorbate. The angular scans have been transferred to scattering vector notation using q = 4πsin(Θ)/λxt. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) and focused ion beam (FIB
  • the SiO2/Si support were fabricated using focussed ion beam (FIB) sputtering at IB settings of 30 kV accelerating voltage and successively decreasing IB currents from 65 nA to 50 pA. The 90–120 nm thick sample foils were subsequently checked for film thickness accuracy determination in a Philips CM200
PDF
Album
Full Research Paper
Published 22 May 2017

Near-field surface plasmon field enhancement induced by rippled surfaces

  • Mario D’Acunto,
  • Francesco Fuso,
  • Ruggero Micheletto,
  • Makoto Naruse,
  • Francesco Tantussi and
  • Maria Allegrini

Beilstein J. Nanotechnol. 2017, 8, 956–967, doi:10.3762/bjnano.8.97

Graphical Abstract
  • and height much smaller than the wavelength of typical plasmon resonances. Different top-down or bottom-up fabrication techniques have been introduced to produce metal nanostructures with active plasmonic reactivity [14]. For example, ion beam sputtering (IBS) is a widely employed bottom-up technique
  • ion-beam sputtering (IBS) generally show a fractal structure, the function C in Equation 13 is chosen to be Gaussian, that is, a special case of a fractal surface with the Hurst exponent equal to one [47]: where a is known as the transverse autocorrelation length, as it describes the mean length
PDF
Album
Supp Info
Full Research Paper
Published 28 Apr 2017

3D Nanoprinting via laser-assisted electron beam induced deposition: growth kinetics, enhanced purity, and electrical resistivity

  • Brett B. Lewis,
  • Robert Winkler,
  • Xiahan Sang,
  • Pushpa R. Pudasaini,
  • Michael G. Stanford,
  • Harald Plank,
  • Raymond R. Unocic,
  • Jason D. Fowlkes and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2017, 8, 801–812, doi:10.3762/bjnano.8.83

Graphical Abstract
  • of 3D growth have been demonstrated [35][36][37][38] beyond simple 1D nanowires, controlled growth of complex geometries using EBID has only recently been achieved based on a combined simulation and computer aided design approach [11]. This approach has also been used with Ga+ ion beam induced
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2017

Vapor deposition routes to conformal polymer thin films

  • Priya Moni,
  • Ahmed Al-Obeidi and
  • Karen K. Gleason

Beilstein J. Nanotechnol. 2017, 8, 723–735, doi:10.3762/bjnano.8.76

Graphical Abstract
  • that the film–substrate interface can be imaged [27][28]. In Figure 6f, an iCVD coated textile fiber has been ion beam ablated to reveal the conformal polymer film [27]. As substrates become more complex and polymer film thicknesses fall below 100 nm, verifying film conformality becomes increasingly
  • difficult. Insufficient Z contrast and charging effects makes SEM cross sections difficult to analyze. Using a focus ion beam (FIB) system to make transmission electron microscopy (TEM) samples is a route often used with inorganic materials. However, ion damage, particularly for very thin films, is an issue
  • ], copyright 2011 American Chemical Society. SEM images of iCVD pEGDA on micro-trenches with aspect ratios of a) 1.4 b) 3.5, c) 5.5 and d) 8.4. e) Cross-sectional SEM of 25 µm stainless-steel wire with 16 µm fluoropolymer coating formed via iCVD. f) iCVD pDMAMS on nylon fiber ion beam ablated to reveal
PDF
Album
Review
Published 28 Mar 2017

Ion beam profiling from the interaction with a freestanding 2D layer

  • Ivan Shorubalko,
  • Kyoungjun Choi,
  • Michael Stiefel and
  • Hyung Gyu Park

Beilstein J. Nanotechnol. 2017, 8, 682–687, doi:10.3762/bjnano.8.73

Graphical Abstract
  • , Department of Mechanical and Process Engineering, Eidgenössische Technische Hochschule (ETH) Zürich, Tannenstrasse 3, CH-8092 Zürich, Switzerland 10.3762/bjnano.8.73 Abstract Recent years have seen a great potential of the focused ion beam (FIB) technology for the nanometer-scale patterning of a
  • resultant pore diameter. In return, the pore dimension as a function of the exposure dose brings out the ion beam profiles. Using this method of determining an ion-beam point spread function, we verify a Gaussian profile of focused gallium ion beams. Graphene sputtering yield is extracted from the
  • source. Our method of profiling ion beams with 2D-layer perforation provides more information on ion beam profiles than the conventional sharp-edge scan method does. Keywords: exposure dose; focused ion beam; freestanding 2D layer; graphene; ion beam diameter; ion beam point spread function
PDF
Album
Full Research Paper
Published 23 Mar 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • (SEM). The cross-section was created with a focused ion beam (FIB). To protect the cutting edge, a layer of platinum was added on top of the sample. The structure itself is emphasized because of charging effects at the PDMS material border. For optical enhancement dotted guiding lines were drawn into
PDF
Album
Full Research Paper
Published 20 Jan 2017

Grazing-incidence optical magnetic recording with super-resolution

  • Gunther Scheunert,
  • Sidney. R. Cohen,
  • René Kullock,
  • Ryan McCarron,
  • Katya Rechev,
  • Ifat Kaplan-Ashiri,
  • Ora Bitton,
  • Paul Dawson,
  • Bert Hecht and
  • Dan Oron

Beilstein J. Nanotechnol. 2017, 8, 28–37, doi:10.3762/bjnano.8.4

Graphical Abstract
  • -fields antiparallel to the DC field, and thus created a more manageable background. Transmission electron microscopy (TEM) cross-sectional imaging was done on a sample lamella prepared via focused ion beam (FIB) of one of the Seagate platters to identify the thin-film layer structure used for modelling
PDF
Album
Full Research Paper
Published 04 Jan 2017

Obtaining and doping of InAs-QD/GaAs(001) nanostructures by ion beam sputtering

  • Sergei N. Chebotarev,
  • Alexander S. Pashchenko,
  • Leonid S. Lunin,
  • Elena N. Zhivotova,
  • Georgy A. Erimeev and
  • Marina L. Lunina

Beilstein J. Nanotechnol. 2017, 8, 12–20, doi:10.3762/bjnano.8.2

Graphical Abstract
  • and Solar Energy, Southern Scientific Center of Russian Academy of Sciences, 344006, 41, Chekhov Avenue, Rostov-on-Don, Russia 10.3762/bjnano.8.2 Abstract The features of InAs quantum dots obtained on GaAs(001) single-crystal substrates by ion-beam sputtering were investigated. It has been shown that
  • barrier layer increases the intensity of photoluminescence peaks of the ground state and the first excited state of the InAs quantum dots. Keywords: 3D growth; doping; ion-beam sputtering; photoluminescence; quantum dots; Introduction Main interests of inorganic nanotechnology science are the study of
  • epitaxy [8] and vapour phase epitaxy [9] are commonly used and well-understood techniques for obtaining such nanostructures. Besides the mentioned methods, classic growth methods such as liquid phase epitaxy [10], laser beam sputtering [11], electron beam sputtering [12] and ion beam sputtering [13] are
PDF
Album
Full Research Paper
Published 03 Jan 2017

Annealing-induced recovery of indents in thin Au(Fe) bilayer films

  • Anna Kosinova,
  • Ruth Schwaiger,
  • Leonid Klinger and
  • Eugen Rabkin

Beilstein J. Nanotechnol. 2016, 7, 2088–2099, doi:10.3762/bjnano.7.199

Graphical Abstract
  • ) on the Au (111) reflection. Cross-section samples were prepared in a dual-beam focused ion beam microscope (FIB; FEI Strata 400-S). Appendix Topography evolution of an axisymmetrical indent by surface diffusion (small slope approximation) To check whether surface diffusion alone can lead to indent
PDF
Album
Full Research Paper
Published 28 Dec 2016

Fundamental properties of high-quality carbon nanofoam: from low to high density

  • Natalie Frese,
  • Shelby Taylor Mitchell,
  • Christof Neumann,
  • Amanda Bowers,
  • Armin Gölzhäuser and
  • Klaus Sattler

Beilstein J. Nanotechnol. 2016, 7, 2065–2073, doi:10.3762/bjnano.7.197

Graphical Abstract
  • under investigation using an electro-optical lens system. The image is then provided either by ionoluminescence [26], Rutherford backscattering of the ions [27], or secondary electron emission [28]. The high resolution is given by the small subsurface ion beam spread [29]. The instrument is suitable for
PDF
Album
Full Research Paper
Published 27 Dec 2016

Nanostructured SnO2–ZnO composite gas sensors for selective detection of carbon monoxide

  • Paul Chesler,
  • Cristian Hornoiu,
  • Susana Mihaiu,
  • Cristina Vladut,
  • Jose Maria Calderon Moreno,
  • Mihai Anastasescu,
  • Carmen Moldovan,
  • Bogdan Firtat,
  • Costin Brasoveanu,
  • George Muscalu,
  • Ion Stan and
  • Mariuca Gartner

Beilstein J. Nanotechnol. 2016, 7, 2045–2056, doi:10.3762/bjnano.7.195

Graphical Abstract
  • ]. However, the addition of another oxide component described in these papers involves complicated and expensive vapor preparation techniques (e.g., chemical vapor deposition (CVD) or physical vapor deposition (PVD), ion-beam or laser-assisted techniques, spray pyrolysis), expensive dedicated equipment (e.g
PDF
Album
Full Research Paper
Published 22 Dec 2016

Numerical investigation of depth profiling capabilities of helium and neon ions in ion microscopy

  • Patrick Philipp,
  • Lukasz Rzeznik and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1749–1760, doi:10.3762/bjnano.7.168

Graphical Abstract
  • polymer sample. The ion beam induces chemical and structural modifications in the polymers, chain scission and bond breaking as well as crosslinking depending on the chemical composition and the structure of the polymer chain [7]. In general, heterocyclic groups are more resistant to electron excitation
PDF
Album
Full Research Paper
Published 17 Nov 2016

Thickness-modulated tungsten–carbon superconducting nanostructures grown by focused ion beam induced deposition for vortex pinning up to high magnetic fields

  • Ismael García Serrano,
  • Javier Sesé,
  • Isabel Guillamón,
  • Hermann Suderow,
  • Sebastián Vieira,
  • Manuel Ricardo Ibarra and
  • José María De Teresa

Beilstein J. Nanotechnol. 2016, 7, 1698–1708, doi:10.3762/bjnano.7.162

Graphical Abstract
  • Materiales de Aragón (ICMA), CSIC - Universidad de Zaragoza, 50009 Zaragoza, Spain 10.3762/bjnano.7.162 Abstract We report efficient vortex pinning in thickness-modulated tungsten–carbon-based (W–C) nanostructures grown by focused ion beam induced deposition (FIBID). By using FIBID, W–C superconducting
  • pinning potentials, maximizing the opportunities for the investigation of fundamental aspects in vortex science under changing external stimuli (e.g., temperature, magnetic field, electrical current). Keywords: focused ion beam induced deposition; magnetotransport; superconductivity; vortex lattice
  • ; Introduction In focused electron/ion beam induced deposition (FEBID/FIBID), a precursor molecule is dissociated by a focused electron/ion beam, producing the local growth of a deposit in a single step and with the shape determined by the electron/ion beam scan [1][2][3][4]. Materials grown by FEBID/FIBID can
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2016

Nanoanalytics for materials science

  • Thilo Glatzel and
  • Tom Wirtz

Beilstein J. Nanotechnol. 2016, 7, 1674–1675, doi:10.3762/bjnano.7.159

Graphical Abstract
  • included in both the device structures and detection techniques. A typical setup includes a probe (such as tip, ion beam or electron beam), the condition of the sample and the interaction between them, which all need to be extensively investigated by simulations and modeling in order to obtain an in-depth
PDF
Editorial
Published 10 Nov 2016

Nano- and microstructured materials for in vitro studies of the physiology of vascular cells

  • Alexandra M. Greiner,
  • Adria Sales,
  • Hao Chen,
  • Sarah A. Biela,
  • Dieter Kaufmann and
  • Ralf Kemkemer

Beilstein J. Nanotechnol. 2016, 7, 1620–1641, doi:10.3762/bjnano.7.155

Graphical Abstract
  • lithography [66]), etching (focused-ion beam [67] and electron-beam nanolithography [68]), electrical (electrospinning [69][70][71][72]), mechanical (nanoskiving [46][73], nanoimprint lithography [66]) and colloidal (colloidal lithgraphy [74][75]) are given here. Nanoscale optical photolithography takes
  • techniques [76]. In UV-NIL, the mold is brought into contact with a wafer previously coated with photoresist and solidified with UV light. A resolution of 30 nm can be achieved [77]. Focused-ion beam nanolithography relies on a beam of ions to locally modify a surface coating, to mill a substrate or to
  • focused-ion beam nanolithography it is also possible to deposit materials. The desired material to deposit is in the gas phase and it is let to adsorb on the surface. Afterwards, the ion beam decomposes the adsorbed molecules into a volatile component and a non-volatile component. The non-volatile
PDF
Album
Review
Published 08 Nov 2016

Graphene-enhanced plasmonic nanohole arrays for environmental sensing in aqueous samples

  • Christa Genslein,
  • Peter Hausler,
  • Eva-Maria Kirchner,
  • Rudolf Bierl,
  • Antje J. Baeumner and
  • Thomas Hirsch

Beilstein J. Nanotechnol. 2016, 7, 1564–1573, doi:10.3762/bjnano.7.150

Graphical Abstract
  • arrays have been first fabricated 1995 by Masuda and Fukuda using a replication process of an anodized alumina structure [23]. Since then, a vast number of techniques has been invented. For example, as focused ion beam (FBI) milling allows a control of the size and shape of the nanoholes with good
PDF
Album
Supp Info
Full Research Paper
Published 01 Nov 2016

Dynamic of cold-atom tips in anharmonic potentials

  • Tobias Menold,
  • Peter Federsel,
  • Carola Rogulj,
  • Hendrik Hölscher,
  • József Fortágh and
  • Andreas Günther

Beilstein J. Nanotechnol. 2016, 7, 1543–1555, doi:10.3762/bjnano.7.148

Graphical Abstract
  • approximated plane [51]. The outcoupled atoms leave the trap and become ionized via a three-photon ionization process. The resulting ion beam is captured and guided by an ion optics [55] and finally detected by a channel electron multiplier (CEM) [56][57], yielding single-atom resolution. While individual
  • leave the trap and become ionized via a three-photon ionization process with lasers at 778 nm and 1064 nm. The resulting ion beam is captured and guided by ion optics [55] (not shown) and finally detected by a channel electron multiplier (CEM) [56][57]. Individual ions are detected with temporal
PDF
Album
Full Research Paper
Published 31 Oct 2016

Dealloying of gold–copper alloy nanowires: From hillocks to ring-shaped nanopores

  • Adrien Chauvin,
  • Cyril Delacôte,
  • Mohammed Boujtita,
  • Benoit Angleraud,
  • Junjun Ding,
  • Chang-Hwan Choi,
  • Pierre-Yves Tessier and
  • Abdel-Aziz El Mel

Beilstein J. Nanotechnol. 2016, 7, 1361–1367, doi:10.3762/bjnano.7.127

Graphical Abstract
  • [6][7]. The formation of hillocks has been encountered in case of various processes such as evaporation and sputtering [7][8][9], ion beam assisted deposition (IBAD) [10][11], chemical vapor deposition (CVD) [12][13] and electroplating [14]. Hillocks are the outcome of a nodular growth taking place
PDF
Album
Supp Info
Full Research Paper
Published 29 Sep 2016

Experimental and simulation-based investigation of He, Ne and Ar irradiation of polymers for ion microscopy

  • Lukasz Rzeznik,
  • Yves Fleming,
  • Tom Wirtz and
  • Patrick Philipp

Beilstein J. Nanotechnol. 2016, 7, 1113–1128, doi:10.3762/bjnano.7.104

Graphical Abstract
  • ion source from Cameca [49], For the generation of the He+ primary ion current, a 20:80 percent Ne/He gas mixture was needed. The He+ and Ne+ beam were then selected using the magnetic sector on the primary column. As stated in [50], the primary ion beam current (20–100 nA) and diameter (25–100 µm
  • ) depended on the primary ion species. Irradiation of polymer samples was performed with 5.5 and 14.5 keV Ne+ and He+ primary ions, resulting in 25° and 36° incidence with respect to the surface normal. The primary ion beam was raster-scanned over a surface of 250 × 250 μm2. On the PS and PMMA samples, the
PDF
Album
Full Research Paper
Published 02 Aug 2016
Other Beilstein-Institut Open Science Activities