Search results

Search for "irradiation" in Full Text gives 545 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Photothermal ablation of murine melanomas by Fe3O4 nanoparticle clusters

  • Xue Wang,
  • Lili Xuan and
  • Ying Pan

Beilstein J. Nanotechnol. 2022, 13, 255–264, doi:10.3762/bjnano.13.20

Graphical Abstract
  • diameter of 329.2 nm. They are highly absorptive at the near-infrared wavelength of 808 nm and efficient at locally converting light into heat. In vitro experiments using light-field microscopy and cell viability assay showed that Fe3O4 NPCs, in conjunction with near-infrared irradiation, effectively
  • MRI imaging, targeted drug delivery and hyperthermia therapy [8][9]. Hyperthermia therapy can be achieved by using either magnetic fields or NIR irradiation. Application of an external alternating magnetic field on these nanoparticles leads to the production of heat to mediate magnetic hyperthermia
  • needed to elicit sufficient hyperthermia by NIR irradiation, lingering magnetite may impose potential systemic toxicity. Thus, Fe3O4 single nanoparticles must be modified to reduce the dosage while keeping their therapeutic efficacy. In our earlier report, we synthesized Fe3O4 nanoparticle-containing
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2022

Impact of device design on the electronic and optoelectronic properties of integrated Ru-terpyridine complexes

  • Max Mennicken,
  • Sophia Katharina Peter,
  • Corinna Kaulen,
  • Ulrich Simon and
  • Silvia Karthäuser

Beilstein J. Nanotechnol. 2022, 13, 219–229, doi:10.3762/bjnano.13.16

Graphical Abstract
  • mechanism, that is, thermally activated hopping conduction in the case of Ru-terpyridine wire devices or sequential tunneling in nanoparticle-based devices. Furthermore, the conductance switching of nanoparticle-based devices upon 530 nm irradiation was attributed to plasmon-induced metal-to-ligand charge
  • devices upon irradiation at a wavelength of 490 to 540 nm and DC bias (USD) of 0.1 to 1.2 V (Figure 5a). Current vs time traces were recorded while the light source was switched on and off for a period needed until a stable current was recorded. The period was varied between 30 s and several minutes. The
  • ). The Ru(MPTP)2–AuNP devices, consisting of three to four AuNPs between the nanoelectrodes, were optically addressed by the same procedure, that is, 530 nm irradiation (USD = 1 V) and on/off switching with different frequencies and at bias voltages in the range from 0.1 to 1.1 V (Figure 5b and
PDF
Album
Supp Info
Full Research Paper
Published 15 Feb 2022

Engineered titania nanomaterials in advanced clinical applications

  • Padmavati Sahare,
  • Paulina Govea Alvarez,
  • Juan Manual Sanchez Yanez,
  • Gabriel Luna-Bárcenas,
  • Samik Chakraborty,
  • Sujay Paul and
  • Miriam Estevez

Beilstein J. Nanotechnol. 2022, 13, 201–218, doi:10.3762/bjnano.13.15

Graphical Abstract
  • minimize the risk of device-related infections, implants are usually coated with TiO2 nanotubes, which under UV irradiation, generate reactive oxygen species (ROS), resulting in the disinfection ability [13]. One of the most vital contributions of nanotechnology is the development of novel modes of drug
  • cells containing TiO2 nps undergo oxidative degeneration upon light irradiation under the influence of generated ROS and, therefore, these nps are considered as a potent photosensitizer in anticancer photodynamic therapy and the photodynamic inactivation of antibiotic-resistant bacteria [15]. TiO2
  • photocatalytic activity. Upon UV irradiation, the electrons in the valence band get excited to the conduction band, leading to the formation of electron–hole pairs and the generation of ROS. Subsequently, the generated holes (h+) convert water/hydroxide molecules to peroxide/hydroxyl radicals by oxidation. The
PDF
Album
Review
Published 14 Feb 2022

A comprehensive review on electrospun nanohybrid membranes for wastewater treatment

  • Senuri Kumarage,
  • Imalka Munaweera and
  • Nilwala Kottegoda

Beilstein J. Nanotechnol. 2022, 13, 137–159, doi:10.3762/bjnano.13.10

Graphical Abstract
PDF
Album
Review
Published 31 Jan 2022

Bacterial safety study of the production process of hemoglobin-based oxygen carriers

  • Axel Steffen,
  • Yu Xiong,
  • Radostina Georgieva,
  • Ulrich Kalus and
  • Hans Bäumler

Beilstein J. Nanotechnol. 2022, 13, 114–126, doi:10.3762/bjnano.13.8

Graphical Abstract
  • , the sterility of the final product is not guaranteed. Terminal sterilization of hemoglobin as well as particle suspension with standard methods of heat inactivation, UV-C irradiation, or gamma irradiation all led to a denaturation of the hemoglobin or to an enormous formation of methemoglobin due to
PDF
Album
Full Research Paper
Published 24 Jan 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • morphology [25][26][27][28][29][30]. However, pure SnO2 suffers from some inherent drawbacks that limit its practical applications. With a wide bandgap (3.5–3.7 eV) [31][32], SnO2 can only be excited by UV irradiation. As a typical oxidation photocatalyst with the CB edge energy level, which is not conducive
  • % after 30 min under solar light irradiation, and the conversion efficacy from NO to NO2 is 1.66%. The high photocatalytic performance and the stability of SnO2 NPs under solar light is promising for potential application [69]. Recent approaches in the modification of SnO2 for photocatalytic NOx oxidation
  • and acetone [75]. The presence of graphene induces the formation of SnO2 and introduces Sn vacancies, which supports the electron transfer from the CB of Zn2SnO4 to oxygen under visible light irradiation (Figure 12). The authors only used a visible light LED with low power (3 W) and obtained a high
PDF
Album
Review
Published 21 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • presents a detailed computational protocol for the atomistic simulation of formation and growth of metal-containing nanostructures during focused electron beam-induced deposition (FEBID). The protocol is based upon irradiation-driven molecular dynamics (IDMD), a novel and general methodology for computer
  • simulations of irradiation-driven transformations of complex molecular systems by means of the advanced software packages MBN Explorer and MBN Studio. Atomistic simulations performed following the formulated protocol provide valuable insights into the fundamental mechanisms of electron-induced precursor
  • fragmentation and the related mechanism of nanostructure formation and growth using FEBID, which are essential for the further advancement of FEBID-based nanofabrication. The developed computational methodology is general and applicable to different precursor molecules, substrate types, and irradiation regimes
PDF
Album
Full Research Paper
Published 13 Oct 2021

Self-assembly of amino acids toward functional biomaterials

  • Huan Ren,
  • Lifang Wu,
  • Lina Tan,
  • Yanni Bao,
  • Yuchen Ma,
  • Yong Jin and
  • Qianli Zou

Beilstein J. Nanotechnol. 2021, 12, 1140–1150, doi:10.3762/bjnano.12.85

Graphical Abstract
  • exhibited high accumulation and ultra-long tumor retention effects. Importantly, animal experiments demonstrated complete eradication of tumor in mice after injection of PWG NPs and laser irradiation, demonstrating the efficacy of PWG nanoparticles in vivo. Indocyanine green (ICG) is widely used in
  • maintain the photothermal conversion efficiency up to 32.0%. After entering the tumor cells, the nanoparticles convert light into heat under a laser irradiation of 808 nm and effectively kill the tumor cells. Inspired by natural photosynthesis, artificial light systems consisting of photosensitizers and
PDF
Album
Review
Published 12 Oct 2021

Is the Ne operation of the helium ion microscope suitable for electron backscatter diffraction sample preparation?

  • Annalena Wolff

Beilstein J. Nanotechnol. 2021, 12, 965–983, doi:10.3762/bjnano.12.73

Graphical Abstract
  • values throughout the work against which the ion-irradiation-induced effects are evaluated. All values can be found in Table 1. Non-irradiated copper: electropolishing and Ar ion polishing To evaluate the effect of electropolishing and argon ion polishing on EBSD measurements, the Cu sample was polished
  • challenging stress/strain analysis. Irradiation of copper at 0° incidence angle To assess the effect of ion irradiation, the copper TEM lamella grids were irradiated with Ga ions using a Ga FIB/SEM or Ne ions using HIM. An ion dose of 3371 ions/nm2 was chosen to allow a comparison with a previously reported
  • study on Ga-induced phase transformations in copper [34]. A lower ion dose (2247 ions/nm2) was also evaluated as it corresponds to the dose that is achieved for commonly reported EBSD polishing time values over larger areas [39]. 30 keV Ga ion irradiation at 0° incidence angle The ion trajectory plot
PDF
Album
Supp Info
Full Research Paper
Published 31 Aug 2021

The role of convolutional neural networks in scanning probe microscopy: a review

  • Ido Azuri,
  • Irit Rosenhek-Goldian,
  • Neta Regev-Rudzki,
  • Georg Fantner and
  • Sidney R. Cohen

Beilstein J. Nanotechnol. 2021, 12, 878–901, doi:10.3762/bjnano.12.66

Graphical Abstract
  • localization microscopy and wide-field images. High-quality, super-resolution images of microtubules, nuclear pores, and mitochondria can be reconstructed from low-resolution images with two orders of magnitude fewer frames than usual. This shortens acquisition time and reduces sample irradiation [119]. Deep
PDF
Album
Review
Published 13 Aug 2021

Comprehensive review on ultrasound-responsive theranostic nanomaterials: mechanisms, structures and medical applications

  • Sepand Tehrani Fateh,
  • Lida Moradi,
  • Elmira Kohan,
  • Michael R. Hamblin and
  • Amin Shiralizadeh Dezfuli

Beilstein J. Nanotechnol. 2021, 12, 808–862, doi:10.3762/bjnano.12.64

Graphical Abstract
  • . reported that when the distance between the cell and the MB was increased to 5.5 µm, the exerted shear stress on the cell membrane suddenly decreased [78]. Schlicher et al. exposed prostate cancer cells (DU145) to 24 kHz US irradiation to investigate the cavitation events and the changes in the cell
  • be improved by employing a nanotechnology-based hyperthermia approach [147]. The schematic illustration of this mechanism is presented in Figure 2. Free radical species generation Free radical molecules, such as ROS, NO, HO•, can be generated after the US irradiation interacts with specific
  • components in water-based media, which plays a role in both therapeutic and diagnostic applications [148][149]. Due to the toxicity of free radicals, some chemical compounds called sonosensitizers have been used as sonodynamic therapy agents which produce synergistic effects with US irradiation by generating
PDF
Album
Review
Published 11 Aug 2021

Recent progress in actuation technologies of micro/nanorobots

  • Ke Xu and
  • Bing Liu

Beilstein J. Nanotechnol. 2021, 12, 756–765, doi:10.3762/bjnano.12.59

Graphical Abstract
  • actuation Wang et al. [31] designed a needle-shaped liquid metal gallium nanoswimmer with controllable movement under near-infrared laser irradiation. Its propulsion force is mainly derived from the thermophoresis force generated by the temperature gradient along the longitudinal axis. Experiments show that
PDF
Album
Review
Published 20 Jul 2021

A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope

  • Frances I. Allen

Beilstein J. Nanotechnol. 2021, 12, 633–664, doi:10.3762/bjnano.12.52

Graphical Abstract
  • irradiation effects, such as defect formation and ion implantation, are used to locally change the properties of the material, and at higher doses, nanofabrication is performed using localized material removal (by sputtering) or addition (by gas-assisted deposition). Sometimes, lower-dose irradiation effects
  • following, the field of materials modification research using the HIM is reviewed, subdivided into the following areas: 1. defect engineering, 2. ion implantation, 3. irradiation-induced restructuring, 4. resist-based lithography, 5. direct-write lithography/milling (including gas-assisted milling), and 6
  • either purposefully creating, or avoiding, varying degrees of disorder in a material. In the following, a range of applications based on these irradiation effects is described, starting with defect engineering studies at the lowest doses and then moving through higher-dose applications. The final
PDF
Album
Review
Published 02 Jul 2021

High-yield synthesis of silver nanowires for transparent conducting PET films

  • Gul Naz,
  • Hafsa Asghar,
  • Muhammad Ramzan,
  • Muhammad Arshad,
  • Rashid Ahmed,
  • Muhammad Bilal Tahir,
  • Bakhtiar Ul Haq,
  • Nadeem Baig and
  • Junaid Jalil

Beilstein J. Nanotechnol. 2021, 12, 624–632, doi:10.3762/bjnano.12.51

Graphical Abstract
  • effective synthetic method is still needed for high yields of impurity-free AgNWs. In order to synthesize silver nanowires several methods have been successfully developed, including ultraviolet irradiation, salt-free solution-based, salt-mediated solution-based, photo reduction, hydrothermal, wet-chemical
PDF
Album
Full Research Paper
Published 01 Jul 2021

Nanoporous and nonporous conjugated donor–acceptor polymer semiconductors for photocatalytic hydrogen production

  • Zhao-Qi Sheng,
  • Yu-Qin Xing,
  • Yan Chen,
  • Guang Zhang,
  • Shi-Yong Liu and
  • Long Chen

Beilstein J. Nanotechnol. 2021, 12, 607–623, doi:10.3762/bjnano.12.50

Graphical Abstract
  • and Honda [4] reported the first example of hydrogen production by photocatalytic water splitting in 1972, using TiO2 as the photocatalyst under ultraviolet-light irradiation. Since then, numerous semiconductors have been explored for photocatalytic hydrogen production (PHP) by water splitting, which
  • generate hydrogen under visible-light irradiation, for the first time. After that, g-C3N4 triggered substantial research interest [12][13][14]. Various strategies have been developed to improve the PHP activity of g-C3N4, such as introducing heterojunctions [15][16][17], copolymerization [18][19][20
  • edges of the frameworks to delicately tune the bandgaps of conjugated polymers. Among them, three polymers, that is, P2, P3, and P4 (Figure 2), showed suitable bandgaps of ca. 2.2 eV, and conferred HERs of 4.72, 9.15, and 2.90 μmol·h−1 (10 mg), respectively, under visible-light irradiation [46][47]. The
PDF
Album
Review
Published 30 Jun 2021

On the stability of microwave-fabricated SERS substrates – chemical and morphological considerations

  • Limin Wang,
  • Aisha Adebola Womiloju,
  • Christiane Höppener,
  • Ulrich S. Schubert and
  • Stephanie Hoeppener

Beilstein J. Nanotechnol. 2021, 12, 541–551, doi:10.3762/bjnano.12.44

Graphical Abstract
  • . Van Duyne and others elaborated the fundamental concept of the enhancement process, which was found to be mainly based on the amplification of the electric field component when the illuminating laser irradiation interacts with metal nanoparticles [6]. Suitable nanoparticles consist preferentially of
  • salt to metallic silver by microwave irradiation in the presence of ethanol utilized as reducing agent (Figure 1a). In practice, the functionalization of the substrates requires only the placement of the cleaned glass supports into a microwave vial containing an aqueous silver acetate precursor co
  • -mixed with ethanol. Subsequently, the closed microwave vials are subjected to microwave irradiation for two minutes. In the first phase of the microwave irradiation the temperature of the precursor mixture rapidly increases (see Supporting Information File 1, Figure S1 for the temperature diagram of a
PDF
Album
Supp Info
Full Research Paper
Published 11 Jun 2021

Surface-enhanced Raman scattering of water in aqueous dispersions of silver nanoparticles

  • Paulina Filipczak,
  • Krzysztof Hałagan,
  • Jacek Ulański and
  • Marcin Kozanecki

Beilstein J. Nanotechnol. 2021, 12, 497–506, doi:10.3762/bjnano.12.40

Graphical Abstract
  • phenomenon is present only in the AgNPs blue sample, not in the AgNPs yellow sample. Also, changes in the structure of AgNPs induced by laser irradiation may be excluded, as an identical UV–vis absorption spectra of the investigated AgNPs dispersions (see Figure S1 in Supporting Information File 1) collected
PDF
Album
Supp Info
Full Research Paper
Published 25 May 2021

Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride

  • Malgorzata Aleksandrzak,
  • Michalina Kijaczko,
  • Wojciech Kukulka,
  • Daria Baranowska,
  • Martyna Baca,
  • Beata Zielinska and
  • Ewa Mijowska

Beilstein J. Nanotechnol. 2021, 12, 473–484, doi:10.3762/bjnano.12.38

Graphical Abstract
  • of the photocatalytic hydrogen generation process under simulated solar light irradiation is presented in Figure 7. It is clear that the designed modification of the samples strongly boosts the photocatalytic efficiency. The hydrogen evolution of Cl-PCN was approx. 4.4 times higher after 3 h in
  • three cycles of light on–off, the performance of both electrodes tends to stabilize, indicating that the photocatalysts are stable under visible-light irradiation [55]. The measurements obtained from electrochemical impedance spectroscopy (EIS) are shown in Figure 9b. It is known that the arc radius of
  • and sonicating for 1 h. The photocatalytic water splitting reaction was carried out in an outer irradiation-type reactor (Pyrex reaction vessel) connected to an argon source. After the reaction solution was placed in the reactor, 5 mL of lactic acid was poured into and purged with argon for air
PDF
Album
Full Research Paper
Published 19 May 2021

Rapid controlled synthesis of gold–platinum nanorods with excellent photothermal properties under 808 nm excitation

  • Jialin Wang,
  • Qianqian Duan,
  • Min Yang,
  • Boye Zhang,
  • Li Guo,
  • Pengcui Li,
  • Wendong Zhang and
  • Shengbo Sang

Beilstein J. Nanotechnol. 2021, 12, 462–472, doi:10.3762/bjnano.12.37

Graphical Abstract
  • proposed. The synthesized Au@Pt NRs have a longitudinal LSPR wavelength of 812 nm, which is very close to a common laser wavelength of 808 nm. The Au@Pt NRs exhibit excellent photothermal properties when irradiated with a laser. The temperature increased by more than 36 °C after irradiation for 10 min
  • on the tip of AuNRs, and their LSPR peak can be adjusted to a desired range. Importantly, we evaluated that the Au@Pt NRs have high PCE and fairly great photothermal stability under 808 nm laser irradiation, which proves that they have great potential as an excellent PTA. Results and Discussion
  • absorption spectrum of the optimized Au@Pt NRs is shown in Figure 4a. The LSPR peak is located at a wavelength of 812 nm, which is very satisfactory for the photothermal effect under laser irradiation with 808 nm. The corresponding micrograph is shown in Figure 4b. Photothermal effect To test the efficiency
PDF
Album
Full Research Paper
Published 17 May 2021

A review on nanostructured silver as a basic ingredient in medicine: physicochemical parameters and characterization

  • Gabriel M. Misirli,
  • Kishore Sridharan and
  • Shirley M. P. Abrantes

Beilstein J. Nanotechnol. 2021, 12, 440–461, doi:10.3762/bjnano.12.36

Graphical Abstract
  • effect of light irradiation on AgNPs with spherical and cubic morphologies under ambient conditions. They confirmed that light wavelengths below 495 nm, corresponding to the UV/blue part of the electromagnetic spectrum, were mainly responsible for their photo-transformation [52]. In both the cases, the
  • (AgxO) around the spherical AgNPs after light exposure, observed in the TEM micrograph shown in Figure 4a, confirmed the quicker photo-oxidation process [52][58]. After 40 h of light irradiation, the level of oxidation in cubic AgNPs was about 30%, while it took only 9 h of light irradiation for the
PDF
Album
Supp Info
Review
Published 14 May 2021

Exploring the fabrication and transfer mechanism of metallic nanostructures on carbon nanomembranes via focused electron beam induced processing

  • Christian Preischl,
  • Linh Hoang Le,
  • Elif Bilgilisoy,
  • Armin Gölzhäuser and
  • Hubertus Marbach

Beilstein J. Nanotechnol. 2021, 12, 319–329, doi:10.3762/bjnano.12.26

Graphical Abstract
  • both precursors [14][15]. It is known that electron irradiation of aromatic SAMs causes the cleavage of C–H bonds and, thus, the formation of reactive, that is, activated C species. This is found to be the starting point for the formation of laterally cross-linked CNMs via the formation of C–C linked
  • time frame in which the cross-linking between electron beam-activated C atoms occurs based on the latter consideration. To investigate this assumption, we performed experiments in which we varied the waiting time between irradiation of the SAM (Figure 1c) and the following precursor dosage (Figure 1d
  • differ in the waiting time between electron irradiation and precursor dosage. All twelve structures were exposed to 3.0 × 10−7 mbar Fe(CO)5 background pressure for 3 h 29 min. In addition, local AE spectra were acquired at the positions indicated with the correspondingly colored stars. After a comparably
PDF
Album
Supp Info
Full Research Paper
Published 07 Apr 2021

The patterning toolbox FIB-o-mat: Exploiting the full potential of focused helium ions for nanofabrication

  • Victor Deinhart,
  • Lisa-Marie Kern,
  • Jan N. Kirchhof,
  • Sabrina Juergensen,
  • Joris Sturm,
  • Enno Krauss,
  • Thorsten Feichtner,
  • Sviatoslav Kovalchuk,
  • Michael Schneider,
  • Dieter Engel,
  • Bastian Pfau,
  • Bert Hecht,
  • Kirill I. Bolotin,
  • Stephanie Reich and
  • Katja Höflich

Beilstein J. Nanotechnol. 2021, 12, 304–318, doi:10.3762/bjnano.12.25

Graphical Abstract
  • -based devices encoding bits using nanoscale domain walls or skyrmions [4]. The magnetic properties of thin magnetic films and multilayers can directly be modified in a controlled manner by low-dose ion irradiation. Local variation of the dose using masks or focused ion beams leads to pure magnetic
  • , atomic composition, and crystallographic phase [33][34]. Here, the impact of He irradiation on the ferromagnetic multilayer [Co0.6/Pt0.8]15 is studied [35][36]. This multilayer shows perpendicular magnetic anisotropy arising from the Co/Pt interfaces and forms nanometer-scale, labyrinth-like domains with
  • opposite out-of-plane magnetization in remanence. We are particularly interested in how ion irradiation changes the morphology of the magnetic domains and how it influences the nucleation and annihilation of domains in a typical adiabatic field cycle as well as after picosecond laser excitation [37][38
PDF
Album
Supp Info
Full Research Paper
Published 06 Apr 2021

Doxorubicin-loaded gold nanorods: a multifunctional chemo-photothermal nanoplatform for cancer management

  • Uzma Azeem Awan,
  • Abida Raza,
  • Shaukat Ali,
  • Rida Fatima Saeed and
  • Nosheen Akhtar

Beilstein J. Nanotechnol. 2021, 12, 295–303, doi:10.3762/bjnano.12.24

Graphical Abstract
  • poly(sodium-4-styrenesulfonate) (PSS-GNRs) with and without NIR laser (808 nm, power density = 1.5 W/cm2 for 2 min) irradiation. The drug-loading capacity of PSS-GNRs was about 76% with a drug loading content of 3.2 mg DOX/mL. The cumulative DOX release significantly increased after laser exposure
  • nanocomplexes with NIR laser irradiation appear more efficient in cell inhibition (93%) than those without laser exposure (65%) and doxorubicin alone (84%). The IC50 values of PSS-GNRs-DOX and PSS-GNRs-DOX were measured as 7.99 and 3.12 µg/mL, respectively, with laser irradiation. Thus, a combinatorial approach
  • of death worldwide from which 9.6 million people died in 2018 [1]. Hepatocellular carcinoma (HCC) is one of the major types of liver cancer with high incidence of mortality [2]. Currently, there are a number of treatment modalities, including chemotherapy, immunotherapy, targeted therapy, irradiation
PDF
Album
Full Research Paper
Published 31 Mar 2021

Gold(I) N-heterocyclic carbene precursors for focused electron beam-induced deposition

  • Cristiano Glessi,
  • Aya Mahgoub,
  • Cornelis W. Hagen and
  • Mats Tilset

Beilstein J. Nanotechnol. 2021, 12, 257–269, doi:10.3762/bjnano.12.21

Graphical Abstract
  • nanostructures [1][2][3][4]. This mask-less nanofabrication technique uses gaseous molecules as precursors. The gas molecules are introduced in the specimen chamber of a scanning electron microscope (SEM), adsorb onto a substrate, and dissociate upon electron irradiation, leaving a solid deposit on the substrate
  • for deposition upon e-beam irradiation. When deposition was successful, two types of deposits were created. Firstly, large deposits for composition analysis were written by repeatedly (2000 passes) exposing a 250 × 250 nm2 area, using point exposures with a dwell time of 500 µs and a pitch of 10 nm
  • , and decompose in a clean manner to the desired products. Furthermore, it should be inexpensive and easy to prepare, non-toxic, and easy to store and handle [17]. The choice of such molecules requires a compromise to be made between volatility, stability, and reactivity induced by electron irradiation
PDF
Album
Supp Info
Full Research Paper
Published 17 Mar 2021
Other Beilstein-Institut Open Science Activities