Search results

Search for "low energy" in Full Text gives 272 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Kelvin probe force microscopy work function characterization of transition metal oxide crystals under ongoing reduction and oxidation

  • Dominik Wrana,
  • Karol Cieślik,
  • Wojciech Belza,
  • Christian Rodenbücher,
  • Krzysztof Szot and
  • Franciszek Krok

Beilstein J. Nanotechnol. 2019, 10, 1596–1607, doi:10.3762/bjnano.10.155

Graphical Abstract
  • the present case of thermally reduced SrTiO3(100), the dominant reconstruction is (√5×√5)R26.6°, which forms on the TiO2 termination, as proved by the scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) investigations (see Figure 5g,h). The surface is composed of two
PDF
Album
Full Research Paper
Published 02 Aug 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • filtering effect [15][16][17]. The potential energy barrier connected with a metallic NP (Schottky barrier) or a multi-phase interface could scatter low-energy electrons more effectively than high-energy electrons [18]. This, in turn, results in an enhancement of the Seebeck coefficient with virtually no
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Luminescence of Tb3Al5O12 phosphors co-doped with Ce3+/Gd3+ for white light-emitting diodes

  • Yu-Guo Yang,
  • Lei Wei,
  • Jian-Hua Xu,
  • Hua-Jian Yu,
  • Yan-Yan Hu,
  • Hua-Di Zhang,
  • Xu-Ping Wang,
  • Bing Liu,
  • Cong Zhang and
  • Qing-Gang Li

Beilstein J. Nanotechnol. 2019, 10, 1237–1242, doi:10.3762/bjnano.10.123

Graphical Abstract
  • correlated colour temperature (CCT) [1][2]. At the same time, this type of WLEDs has the advantages of long lifetime, eco-friendliness, high luminous efficiency and low energy consumption, which helps to mitigate two serious issues in the world, namely ecological crisis and energy dilemma. As a result
PDF
Album
Full Research Paper
Published 14 Jun 2019

Pure and mixed ordered monolayers of tetracyano-2,6-naphthoquinodimethane and hexathiapentacene on the Ag(100) surface

  • Robert Harbers,
  • Timo Heepenstrick,
  • Dmitrii F. Perepichka and
  • Moritz Sokolowski

Beilstein J. Nanotechnol. 2019, 10, 1188–1199, doi:10.3762/bjnano.10.118

Graphical Abstract
  • structures are formed on a surface by molecules that are otherwise typically used for the synthesis of bulk charge-transfer materials. The layers were obtained by vacuum deposition on the Ag(100) surface and analyzed by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). The
  • a planar orientation on the surface. We discuss the influence of intermolecular charge transfer on the ordering in the mixed structure. Keywords: charge transfer; low-energy electron diffraction; hexathiapentacene; scanning tunneling microscopy; tetracyano-2,6-naphthoquinodimethane; Introduction
  • :1 stoichiometry. Experimental The experiments were conducted in an ultra-high vacuum (UHV) chamber with a base pressure of 10−10 mbar. The chamber was equipped with a variable-temperature scanning tunneling microscope STM (type RHK UHV 300) from RHK Technologies and a multi-channel plate (MCP) low
PDF
Album
Supp Info
Full Research Paper
Published 06 Jun 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • was found that the different emission lines in the spectra and their observed evolution with increasing injection current result from different emission energies and intensities of the four (In,Ga)N insertions. The low-energy line was attributed to the EL of the first insertion (QW 1) next to the n
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • , we investigate the structural and magnetic properties of ensembles of ferrite nanoparticles with formula Mn1−xCoxFe2O4, (0 ≤ x ≤ 1) prepared by a combined low-energy ball milling and self-combustion method. This simple and low cost synthesis approach (i.e., the synthesis is performed at a relatively
  • on the magnetic properties of Mn1−xCoxFe2O4 nanoparticles prepared by low-energy ball milling was investigated. Small effects are observed regarding the structure of the sample, while the average particle size and shape remain almost constant. All samples systematically show a lattice parameter
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • only the physical processes are involved in separating the charges, and thus the surface area and porous nature of the electrode materials play the main role. However, charge stored only through electrostatic ion adsorption causes a relatively low energy density (<10 Wh kg−1), which leads to
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • charging was compensated using a dual beam charge neutralization, with a flux of low-energy electrons (ca. 1 eV) combined with positive Ar ions of very low energy (10 eV). Samples were sputter cleaned for 1 min with an Ar ion beam of 1 kV, 1 µA (raster size: 2 × 2 cm2). The acquired spectra were processed
  • justified with the formation of more Zn–OH groups due to the removal of the organic ligands. Furthermore, room-temperature PE-ALD processes have often shown in the literature the inclusion of chain-terminating –OH groups in the inorganic matrix, due to the low energy provided during the growth [47][57]. The
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019

Deposition of metal particles onto semiconductor nanorods using an ionic liquid

  • Michael D. Ballentine,
  • Elizabeth G. Embry,
  • Marco A. Garcia and
  • Lawrence J. Hill

Beilstein J. Nanotechnol. 2019, 10, 718–724, doi:10.3762/bjnano.10.71

Graphical Abstract
  • expanded upon by Pyun et al. [27][28]. Our CdSe quantum dots had an average diameter of 2.4 nm as determined using the correlation of particle diameter with the wavelength of the low energy absorbance peak (λmax = 509 nm) [29]. The CdSe@CdS nanorods had an average length of 50 ± 10 nm and an average
PDF
Album
Supp Info
Letter
Published 14 Mar 2019

Enhancement in thermoelectric properties due to Ag nanoparticles incorporated in Bi2Te3 matrix

  • Srashti Gupta,
  • Dinesh Chandra Agarwal,
  • Bathula Sivaiah,
  • Sankarakumar Amrithpandian,
  • Kandasami Asokan,
  • Ajay Dhar,
  • Binaya Kumar Panigrahi,
  • Devesh Kumar Avasthi and
  • Vinay Gupta

Beilstein J. Nanotechnol. 2019, 10, 634–643, doi:10.3762/bjnano.10.63

Graphical Abstract
  • theoretical calculations for the introduction of metal nano-inclusions in TE materials. This theory predicts the band bending at the metal–semiconductor interface will allow for the transmission of high energy electrons along with a blocking of low energy electrons. This electron energy filter results in
  • method and the incorporation in Bi2Te3 synthesized by ball milling, which yielded a significant enhancement in power factor and ZT in Bi/Bi2Te3 due to the scattering of low-energy electrons by a barrier potential at the Bi–Bi2Te3 interface [15]. Improvement in TE properties has also been observed after
  • a future study. The enhancement of the Seebeck coefficient can be attributed to carrier filtering. Band bending at the metal–semiconductor interfaces leads to a strong scattering of low-energy electrons whereas high-energy electrons remain unaffected [20][21]. The energy-dependent scattering of
PDF
Album
Full Research Paper
Published 04 Mar 2019

Direct observation of the CVD growth of monolayer MoS2 using in situ optical spectroscopy

  • Claudia Beatriz López-Posadas,
  • Yaxu Wei,
  • Wanfu Shen,
  • Daniel Kahr,
  • Michael Hohage and
  • Lidong Sun

Beilstein J. Nanotechnol. 2019, 10, 557–564, doi:10.3762/bjnano.10.57

Graphical Abstract
  • contrast, the features associated with MoS2 vanish. The decrease of the transmittance (the increase of DTS) over the low-energy range could be attributed to the increase of the scattering of the MoO3 thin film deposited on the quartz window. In order to understand the observed evolution of the DT
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2019

Mo-doped boron nitride monolayer as a promising single-atom electrocatalyst for CO2 conversion

  • Qianyi Cui,
  • Gangqiang Qin,
  • Weihua Wang,
  • Lixiang Sun,
  • Aijun Du and
  • Qiao Sun

Beilstein J. Nanotechnol. 2019, 10, 540–548, doi:10.3762/bjnano.10.55

Graphical Abstract
  • CRR and HER on the Mo-doped BN is −0.45 V and −0.62 V, respectively. Therefore, we can draw the conclusion that the CRR is predominant on the catalyst due to its relatively low energy demand. The limiting potential is relatively low among most of the catalysts to selectively produce CH4 for CRR with
PDF
Album
Supp Info
Full Research Paper
Published 22 Feb 2019

Choosing a substrate for the ion irradiation of two-dimensional materials

  • Egor A. Kolesov

Beilstein J. Nanotechnol. 2019, 10, 531–539, doi:10.3762/bjnano.10.54

Graphical Abstract
  • the latter, the maximum values of transferred energy are up to an order of magnitude larger. The insets in Figure 1 show details of the low-energy region (10−1–100 keV) of the dependencies presented. As the incident ion energy increases, the energy transferred to both substrate sputtering and recoils
  • reaching the interface begins to increase notably starting from 10−1–100 keV where the ion has enough energy to activate these processes. As seen in the insets, the energy transferred to recoils reaching the interface seems to dominate over sputtering in the low-energy range. However, it should be noted
  • crystal lattice, leading to ion implantation (doping) [25]. For the latter to occur, the ion should have a considerably low energy – of about 20–200 eV, with the most effective implantation occurring at 25–75 eV [1][25][26][27][28][29]. The process peaks in the lower part of this region for 2D TMDs and in
PDF
Album
Full Research Paper
Published 22 Feb 2019

Advanced scanning probe lithography using anatase-to-rutile transition to create localized TiO2 nanorods

  • Julian Kalb,
  • Vanessa Knittel and
  • Lukas Schmidt-Mende

Beilstein J. Nanotechnol. 2019, 10, 412–418, doi:10.3762/bjnano.10.40

Graphical Abstract
  • TiO2 nanorods grow hydrothermally on anatase particles with a diameter of approximately 25 nm [39][40]. Even if rutile TiO2 seed nanocrystals are already present, it is assumed that anatase clusters diffuse along rutile TiO2 surfaces towards low-energy facets and perform a solid-state phase
PDF
Album
Supp Info
Full Research Paper
Published 08 Feb 2019

Transport signatures of an Andreev molecule in a quantum dot–superconductor–quantum dot setup

  • Zoltán Scherübl,
  • András Pályi and
  • Szabolcs Csonka

Beilstein J. Nanotechnol. 2019, 10, 363–378, doi:10.3762/bjnano.10.36

Graphical Abstract
  • using second-order perturbation theory in the SC-QD tunneling term HT,SC. This procedure yields a 16-dimensional low-energy effective Hamiltonian for the double QD, which describes the superconducting proximity effect of the SC lead on the double QD. Here, we describe this effective Hamiltonian and the
  • procedure to obtain it. For this, we consider the Hamiltonian without the N leads, HQD + HSC + HT,SC + HIT. (We will take into account the N leads later to describe transport.) Assuming Δ U and further neglecting the QD-SC tunneling HT,SC, the 16-dimensional quasiparticle-free low-energy subspace is
  • energetically well-separated from other states containing a finite number of quasiparticles. The low-energy subspace is spanned by the product basis, the products of particle-number eigenstates of each QD, namely, where the arrows denote the spin states of the electrons. We will use the notation We perform
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2019

Intuitive human interface to a scanning tunnelling microscope: observation of parity oscillations for a single atomic chain

  • Sumit Tewari,
  • Jacob Bakermans,
  • Christian Wagner,
  • Federica Galli and
  • Jan M. van Ruitenbeek

Beilstein J. Nanotechnol. 2019, 10, 337–348, doi:10.3762/bjnano.10.33

Graphical Abstract
  • surface atoms. Figure 4 shows that after fixing the crystallographic orientation (as explained above), with the use of two adatoms one can obtain with 100% certainty the complete information about the surface atoms, as the adatoms will sit only on the hollow sites (low-energy position, see Figure 4b). A
PDF
Album
Supp Info
Full Research Paper
Published 04 Feb 2019

A Ni(OH)2 nanopetals network for high-performance supercapacitors synthesized by immersing Ni nanofoam in water

  • Donghui Zheng,
  • Man Li,
  • Yongyan Li,
  • Chunling Qin,
  • Yichao Wang and
  • Zhifeng Wang

Beilstein J. Nanotechnol. 2019, 10, 281–293, doi:10.3762/bjnano.10.27

Graphical Abstract
  • between active materials and electrolyte, for which transition metal oxides/hydroxides with multiple valence are used as electrode materials [8][9]. EDLCs hold a high power density and long cycling stability, but their practical application is limited by the low energy density. In comparison, pseudo
PDF
Album
Full Research Paper
Published 25 Jan 2019

Study of silica-based intrinsically emitting nanoparticles produced by an excimer laser

  • Imène Reghioua,
  • Mattia Fanetti,
  • Sylvain Girard,
  • Diego Di Francesca,
  • Simonpietro Agnello,
  • Layla Martin-Samos,
  • Marco Cannas,
  • Matjaz Valant,
  • Melanie Raine,
  • Marc Gaillardin,
  • Nicolas Richard,
  • Philippe Paillet,
  • Aziz Boukenter,
  • Youcef Ouerdane and
  • Antonino Alessi

Beilstein J. Nanotechnol. 2019, 10, 211–221, doi:10.3762/bjnano.10.19

Graphical Abstract
  • , within the spot, are irradiated differently. Our data indicate that for low energy per pulse (or fluence) the particle shape tends to be irregular. The use of the same mask could limit the contribution of the irradiated part far from the center (thus with low local fluence), which seems to contribute to
PDF
Album
Full Research Paper
Published 16 Jan 2019

Sputtering of silicon nanopowders by an argon cluster ion beam

  • Xiaomei Zeng,
  • Vasiliy Pelenovich,
  • Zhenguo Wang,
  • Wenbin Zuo,
  • Sergey Belykh,
  • Alexander Tolstogouzov,
  • Dejun Fu and
  • Xiangheng Xiao

Beilstein J. Nanotechnol. 2019, 10, 135–143, doi:10.3762/bjnano.10.13

Graphical Abstract
  • target density. The energy dependence demonstrated an unusual non-monotonic behavior. At 17.3 keV a maximum of the sputtering yield was observed, which was more than forty times higher than that of the bulk Si. The surface roughness at low energy demonstrates a similar energy dependence with a maximum
  • discussed in [6][7], ≈1 µm and 60 nm, respectively. Moreover, the roughening effect itself can be a consequence of the high sputtering yield. A more accurate explanation of the sputtering yield increase at the low energy requires additional study of the structure of the top layer. It should be noted that
  • the cluster, A = 57 eV and q = 2.25 are the fitting parameters. At low energy, the denominator is close to 1 and the equation is simplified to The functional dependence in Equation 1 and Equation 3 is the same except for the presence of the threshold energy Eth in Equation 1. In general, the existence
PDF
Album
Full Research Paper
Published 10 Jan 2019

Apparent tunneling barrier height and local work function of atomic arrays

  • Neda Noei,
  • Alexander Weismann and
  • Richard Berndt

Beilstein J. Nanotechnol. 2018, 9, 3048–3052, doi:10.3762/bjnano.9.283

Graphical Abstract
  • . This is reflected by the notion of a local work function Φ [7][8][9]. Adsorbates modify Φ in an intriguing manner [10][11][12][13]. In turn, variations of Φ produce, e.g., atomic-scale contrast in field-emission microscopy, photo-emission electron microscopy, and low-energy electron microscopy [14][15
PDF
Album
Letter
Published 17 Dec 2018

Site-controlled formation of single Si nanocrystals in a buried SiO2 matrix using ion beam mixing

  • Xiaomo Xu,
  • Thomas Prüfer,
  • Daniel Wolf,
  • Hans-Jürgen Engelmann,
  • Lothar Bischoff,
  • René Hübner,
  • Karl-Heinz Heinig,
  • Wolfhard Möller,
  • Stefan Facsko,
  • Johannes von Borany and
  • Gregor Hlawacek

Beilstein J. Nanotechnol. 2018, 9, 2883–2892, doi:10.3762/bjnano.9.267

Graphical Abstract
  • pyrolysis [13] and ion beam synthesis in an SiO2 matrix [14][15][16][17]. Compared to conventional ion beam synthesis using low-energy ion implantation, collisional mixing of Si into an SiO2 layer by ion irradiation at higher energies leads to a better control over the Si excess, and a self-aligned δ-layer
PDF
Album
Full Research Paper
Published 16 Nov 2018

Charged particle single nanometre manufacturing

  • Philip D. Prewett,
  • Cornelis W. Hagen,
  • Claudia Lenk,
  • Steve Lenk,
  • Marcus Kaestner,
  • Tzvetan Ivanov,
  • Ahmad Ahmad,
  • Ivo W. Rangelow,
  • Xiaoqing Shi,
  • Stuart A. Boden,
  • Alex P. G. Robinson,
  • Dongxu Yang,
  • Sangeetha Hari,
  • Marijke Scotuzzi and
  • Ejaz Huq

Beilstein J. Nanotechnol. 2018, 9, 2855–2882, doi:10.3762/bjnano.9.266

Graphical Abstract
  • focusing the primary electron beam on the substrate in the presence of adsorbed precursor gas molecules delivered from a nozzle close to the sample surface. The electrons interact with the substrate generating high-energy backscattered and low-energy (<50 eV) secondary electrons all of which interact with
PDF
Album
Review
Published 14 Nov 2018

Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS

  • Sherif Okeil and
  • Jörg J. Schneider

Beilstein J. Nanotechnol. 2018, 9, 2813–2831, doi:10.3762/bjnano.9.263

Graphical Abstract
  • using a microfocused, monochromated Al Kα X-ray source (30–400 µm spot size). The K-Alpha charge compensation system was employed during analysis, using electrons of 8 eV energy and low-energy argon ions to prevent any localized charge build-up. Auger spectroscopy was performed using a PHI 680 (Physical
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2018

Biomimetic surface structures in steel fabricated with femtosecond laser pulses: influence of laser rescanning on morphology and wettability

  • Camilo Florian Baron,
  • Alexandros Mimidis,
  • Daniel Puerto,
  • Evangelos Skoulas,
  • Emmanuel Stratakis,
  • Javier Solis and
  • Jan Siegel

Beilstein J. Nanotechnol. 2018, 9, 2802–2812, doi:10.3762/bjnano.9.262

Graphical Abstract
  • Experimental section, the surface wetting was measured after at least 15 days after irradiation so that the surface was stabilized, allowing the formation of this free low energy coating required for a stable surface. A straightforward way to measure the apparent contact angle wetting behavior of a surface is
PDF
Album
Supp Info
Full Research Paper
Published 05 Nov 2018

Magnetic and luminescent coordination networks based on imidazolium salts and lanthanides for sensitive ratiometric thermometry

  • Pierre Farger,
  • Cédric Leuvrey,
  • Mathieu Gallart,
  • Pierre Gilliot,
  • Guillaume Rogez,
  • João Rocha,
  • Duarte Ananias,
  • Pierre Rabu and
  • Emilie Delahaye

Beilstein J. Nanotechnol. 2018, 9, 2775–2787, doi:10.3762/bjnano.9.259

Graphical Abstract
  • emission spectra, the broad band has a very fast time dependence totally suppressed by a time delay of only 0.05 ms. The suppression of the low-energy T1→S0 ligand emission denotes an energy transfer from the triplet excited state to the Eu3+ and Tb3+ excited levels. This energy transfer is more effective
PDF
Album
Supp Info
Full Research Paper
Published 30 Oct 2018
Other Beilstein-Institut Open Science Activities