Search results

Search for "silver nanoparticles" in Full Text gives 138 result(s) in Beilstein Journal of Nanotechnology.

Ultrastructural changes in methicillin-resistant Staphylococcus aureus induced by positively charged silver nanoparticles

  • Dulce G. Romero-Urbina,
  • Humberto H. Lara,
  • J. Jesús Velázquez-Salazar,
  • M. Josefina Arellano-Jiménez,
  • Eduardo Larios,
  • Anand Srinivasan,
  • Jose L. Lopez-Ribot and
  • Miguel José Yacamán

Beilstein J. Nanotechnol. 2015, 6, 2396–2405, doi:10.3762/bjnano.6.246

Graphical Abstract
  • Abstract Silver nanoparticles offer a possible means of fighting antibacterial resistance. Most of their antibacterial properties are attributed to their silver ions. In the present work, we study the actions of positively charged silver nanoparticles against both methicillin-sensitive Staphylococcus
  • aureus and methicillin-resistant Staphylococcus aureus. We use aberration-corrected transmission electron microscopy to examine the bactericidal effects of silver nanoparticles and the ultrastructural changes in bacteria that are induced by silver nanoparticles. The study revealed that our 1 nm average
  • size silver nanoparticles induced thinning and permeabilization of the cell wall, destabilization of the peptidoglycan layer, and subsequent leakage of intracellular content, causing bacterial cell lysis. We hypothesize that positively charged silver nanoparticles bind to the negatively charged
PDF
Album
Full Research Paper
Published 15 Dec 2015

Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory

  • Marina E. Vance,
  • Todd Kuiken,
  • Eric P. Vejerano,
  • Sean P. McGinnis,
  • Michael F. Hochella Jr.,
  • David Rejeski and
  • Matthew S. Hull

Beilstein J. Nanotechnol. 2015, 6, 1769–1780, doi:10.3762/bjnano.6.181

Graphical Abstract
  • in Standardization (ANEC), joined efforts to develop an inventory of “consumer products with nano-claims” available to consumers in Europe [10]. A new inventory was generated annually from 2009 to 2012, but the 2011 and 2012 versions focused exclusively on products containing silver nanoparticles
  • . Titanium dioxide (TiO2), silicon dioxide, and zinc oxide are the most produced nanomaterials worldwide (on a mass basis) and the global annual production of silver nanoparticles represents only 2% of that of TiO2 [20][21]. However, silver nanoparticles are the most popular advertised nanomaterial in the
  • compositions, silver is also the most frequently advertised nanomaterial component, with 207 products or 14.5% [11]. Silver nanoparticles are popular consumer product additives due to their well-documented antimicrobial properties [22]. Figure 3 shows how the availability of these major nanomaterial
PDF
Album
Supp Info
Full Research Paper
Published 21 Aug 2015

In situ SU-8 silver nanocomposites

  • Søren V. Fischer,
  • Basil Uthuppu and
  • Mogens H. Jakobsen

Beilstein J. Nanotechnol. 2015, 6, 1661–1665, doi:10.3762/bjnano.6.168

Graphical Abstract
  • photoresist SU-8 has been developed. AgNO3 dissolved in acetonitrile and mixed with the epoxy-based photoresist SU-8 forms silver nanoparticles primarily during the pre- and post-exposure soft bake steps at 95 °C. A further high-temperature treatment at 300 °C resulted in the formation of densely
  • homogeneously distributed silver nanoparticles in the photoresist matrix. No particle growth or agglomeration of nanoparticles is observed at this point. The reported new in situ silver nanocomposite materials can be spin coated as homogeneous thin films and structured by using UV lithography. A resolution of 5
  • fabricating homogeneous SU-8-based metal nanocomposite thin films with in situ generated silver nanoparticles. These composite materials can be deposited on wafers by using standard spin coating techniques and subsequently structured with UV lithography. The nanocomposite is prepared by dissolving AgNO3
PDF
Album
Letter
Published 30 Jul 2015

How decision analysis can further nanoinformatics

  • Matthew E. Bates,
  • Sabrina Larkin,
  • Jeffrey M. Keisler and
  • Igor Linkov

Beilstein J. Nanotechnol. 2015, 6, 1594–1600, doi:10.3762/bjnano.6.162

Graphical Abstract
  • contribution to the overall hazard score [17]. In a case study by Tervonen et al. [18], an MCDA framework was applied for the classification of five nanomaterials: nC60, multiwalled carbon nanotubes (MWCNTs), CdSe, silver nanoparticles (Ag NPs), and aluminum nanoparticles (Al NPs). The SMAA-Tri MCDA model was
  • to prioritize research portfolios at the national level. This PDA was an extension of a VOI approach evaluating multiple research topics for three emerging nanomaterials: multiwalled carbon nanotubes, silver nanoparticles, and titanium dioxide nanoparticles [26]. First, a preliminary screening tool
PDF
Commentary
Published 22 Jul 2015

Formation of substrate-based gold nanocage chains through dealloying with nitric acid

  • Ziren Yan,
  • Ying Wu and
  • Junwei Di

Beilstein J. Nanotechnol. 2015, 6, 1362–1368, doi:10.3762/bjnano.6.140

Graphical Abstract
  • of nanocages In our previous reports [23][24][25], we have electro-deposited template silver nanoparticles (AgNPs) on ITO substrates and carried out the galvanic replacement reactions. Figure 1 shows top-view and tilted-view SEM images of unreacted AgNP templates and those exposed to aqueous 0.1 mM
PDF
Album
Full Research Paper
Published 18 Jun 2015

Synthesis, characterization and in vitro effects of 7 nm alloyed silver–gold nanoparticles

  • Simon Ristig,
  • Svitlana Chernousova,
  • Wolfgang Meyer-Zaika and
  • Matthias Epple

Beilstein J. Nanotechnol. 2015, 6, 1212–1220, doi:10.3762/bjnano.6.124

Graphical Abstract
  • scientific studies due to their distinct physicochemical properties [1][2]. Apart from their catalytic and optical features, in particular, silver and gold nanoparticles have begun to play a major role in biochemistry, biology and medicine [3][4][5]. Silver nanoparticles are known to be highly toxic towards
  • bacteria [6][7][8]. As a result, they are often employed as antibacterial agents in biomedicine or in consumer products [9][10][11]. Unfortunately, the therapeutic window for silver nanoparticles is rather narrow as silver nanoparticles are also toxic towards eukaryotic cells [11][12]. In contrast, gold
  • ablation was reported [25][26][27]. Alloying of presynthesized silver core/gold shell nanoparticles by refluxing with oleylamine [28] or ultrasonication of separate gold and silver nanoparticles [29] was also described. Here, an aqueous co-reduction of silver nitrate and tetrachloroauric acid with a
PDF
Album
Full Research Paper
Published 27 May 2015

Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement

  • Zheren Du,
  • Lianwei Chen,
  • Tsung-Sheng Kao,
  • Mengxue Wu and
  • Minghui Hong

Beilstein J. Nanotechnol. 2015, 6, 1199–1204, doi:10.3762/bjnano.6.122

Graphical Abstract
  • characterized by SEM. The particle size and size distribution of the gold and silver nanoparticles are summarized in Figure 1c,d. This shows that the gold nanoparticle diameter distribution ranges from 5 to 30 nm with a maximum at 15 nm. The effect of clustering of the nanoparticles is observed upon drying of
  • gold/silica nanocomposites than for the pure gold nanoparticle dispersion. Figure 3c,d shows the optical limiting response and normalized transmittance curves of silver nanoparticles and silver/silica nanocomposites. By adding the silica microspheres, the optical limiting threshold is lowered from 5.4
  • to 3.4 J/cm2. The transmittance curves in Figure 3d also show that the optical limiting property of the silver nanoparticles can be improved by addition of silica microspheres. From these results, it can be demonstrated that the optical limiting threshold can be significantly lowered with the
PDF
Album
Full Research Paper
Published 22 May 2015

Tattoo ink nanoparticles in skin tissue and fibroblasts

  • Colin A. Grant,
  • Peter C. Twigg,
  • Richard Baker and
  • Desmond J. Tobin

Beilstein J. Nanotechnol. 2015, 6, 1183–1191, doi:10.3762/bjnano.6.120

Graphical Abstract
  • accumulation of micrometre- and nanometre-sized silver particles following subcutaneous injection in rats, and found that silver nanoparticles were distributed throughout the main organs especially kidney, liver, spleen, brain and lungs [31]. By contrast, the micrometre-sized silver particles did not get into
PDF
Album
Full Research Paper
Published 20 May 2015

Patterning technique for gold nanoparticles on substrates using a focused electron beam

  • Takahiro Noriki,
  • Shogo Abe,
  • Kotaro Kajikawa and
  • Masayuki Shimojo

Beilstein J. Nanotechnol. 2015, 6, 1010–1015, doi:10.3762/bjnano.6.104

Graphical Abstract
  • structures with gold and silver nanoparticles using a nanomanipulator. This technique is fascinating, but it may be a time-consuming process for production of relatively large circuits. Nanostructures have also been fabricated using focused ion beam- or focused electron beam-induced deposition [1][7
PDF
Album
Full Research Paper
Published 22 Apr 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • medical and consumer products. Gold and silver nanoparticles play an important role in the current increase of nanoparticle usage. However, our understanding concerning possible side effects of this increased exposure to particles, which are frequently in the same size regime as medium sized biomolecules
  • elucidate how composition, size and surface modification of nanoparticles influence viablility and functionality of reproduction relevant cells derived from various animal models. While in vitro cultured embryos displayed no toxic effects after the microinjection of gold and silver nanoparticles, sperm
  • showing a dose-dependent response towards protein (BSA) coated gold–silver alloy and silver nanoparticles leading up to complete arrest of maturation. Recent biodistribution studies confirmed that nanoparticles gain access to the ovaries and also penetrate the blood–testis and placental barrier. Thus, the
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015

Hollow plasmonic antennas for broadband SERS spectroscopy

  • Gabriele C. Messina,
  • Mario Malerba,
  • Pierfrancesco Zilio,
  • Ermanno Miele,
  • Michele Dipalo,
  • Lorenzo Ferrara and
  • Francesco De Angelis

Beilstein J. Nanotechnol. 2015, 6, 492–498, doi:10.3762/bjnano.6.50

Graphical Abstract
  • is still higher than that derived from conventional broad-range plasmonic enhancers, such as silver nanoparticles [28]. Moreover, it has been verified that a fine tuning of the optical properties of antennas can be achieved by controlling their geometrical parameters such as height and diameter, in
PDF
Album
Full Research Paper
Published 18 Feb 2015

Raman spectroscopy as a tool to investigate the structure and electronic properties of carbon-atom wires

  • Alberto Milani,
  • Matteo Tommasini,
  • Valeria Russo,
  • Andrea Li Bassi,
  • Andrea Lucotti,
  • Franco Cataldo and
  • Carlo S. Casari

Beilstein J. Nanotechnol. 2015, 6, 480–491, doi:10.3762/bjnano.6.49

Graphical Abstract
  • spectrum. A shift in the main Raman peak locations is accompanied by the appearance of new spectral features at lower wavenumbers (below 2000 cm−1), as shown in Figure 6 for the case of silver nanoparticles. This occurs also in the case of gold nanoparticles for different excitation wavelengths ranging
  • stability observed after mixing with silver nanoparticles [60]. Phenyl-capped polyynes show similar aggregation when mixed with metal nanoparticles. The changes occurring in the vibrational properties of wires upon interaction with metal nanoparticles (i.e., observed comparing Raman with SERS) suggest a
PDF
Album
Review
Published 17 Feb 2015

Green preparation and spectroscopic characterization of plasmonic silver nanoparticles using fruits as reducing agents

  • Jes Ærøe Hyllested,
  • Marta Espina Palanco,
  • Nicolai Hagen,
  • Klaus Bo Mogensen and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2015, 6, 293–299, doi:10.3762/bjnano.6.27

Graphical Abstract
  • capability to reduce silver and gold salts and to create silver and gold nanoparticles. We report the preparation of silver nanoparticles with sizes between 10 and 300 nm from silver nitrate using fruit extract collected from pineapples and oranges as reducing agents. The evolvement of a characteristic
  • surface plasmon extinction spectrum in the range of 420 nm to 480 nm indicates the formation of silver nanoparticles after mixing silver nitrate solution and fruit extract. Shifts in plasmon peaks over time indicate the growth of nanoparticles. Electron microscopy shows that the shapes of the
  • absorption band in the UV. This confirms the evolution of silver nanoparticles from silver clusters. The presence of various silver clusters on the surface of the “green” plasmonic silver nanoparticles is also supported by a strong multicolor luminesce signal emitted by the plasmonic particles during 473 nm
PDF
Album
Supp Info
Full Research Paper
Published 26 Jan 2015

Synthesis of boron nitride nanotubes and their applications

  • Saban Kalay,
  • Zehra Yilmaz,
  • Ozlem Sen,
  • Melis Emanet,
  • Emine Kazanc and
  • Mustafa Çulha

Beilstein J. Nanotechnol. 2015, 6, 84–102, doi:10.3762/bjnano.6.9

Graphical Abstract
  • combined with the properties of other nanomaterials to construct novel sensor devices for humidity, carbon dioxide detection, and clinical diagnostics. A highly sensitive humidity sensor using BNNTs and silver nanoparticles (AgNPs) for the rapid detection of humidity was fabricated [90]. Figure 8 shows the
PDF
Album
Review
Published 08 Jan 2015

SERS and DFT study of copper surfaces coated with corrosion inhibitor

  • Maurizio Muniz-Miranda,
  • Francesco Muniz-Miranda and
  • Stefano Caporali

Beilstein J. Nanotechnol. 2014, 5, 2489–2497, doi:10.3762/bjnano.5.258

Graphical Abstract
  • the SERS enhancement, could to some extent change the ligand adsorption to copper. Hence, a roughening procedure of smooth copper plates was developed to ensure a suitable SERS activation without the aid of silver nanoparticles. The SERS spectra of 1,2,4-triazole adsorbed on nanostructured copper
PDF
Album
Full Research Paper
Published 29 Dec 2014

Interaction of dermatologically relevant nanoparticles with skin cells and skin

  • Annika Vogt,
  • Fiorenza Rancan,
  • Sebastian Ahlberg,
  • Berouz Nazemi,
  • Chun Sik Choe,
  • Maxim E. Darvin,
  • Sabrina Hadam,
  • Ulrike Blume-Peytavi,
  • Kateryna Loza,
  • Jörg Diendorf,
  • Matthias Epple,
  • Christina Graf,
  • Eckart Rühl,
  • Martina C. Meinke and
  • Jürgen Lademann

Beilstein J. Nanotechnol. 2014, 5, 2363–2373, doi:10.3762/bjnano.5.245

Graphical Abstract
  • penetration of silver nanoparticles (AgNP, mean size 70 nm) in porcine ear skin. By tracking the Raman signal of AgNP, the mean penetration depth in intact skin was found to be 4.4 ± 1.5 µm, which is in accordance with other investigations on silica [3], zink oxide [19], or AgNP in this size range or smaller
  • ROS were formed compared to AgNP which were produced and stored in an argon atmosphere. The oxygen in the ambient atmosphere is responsible for the formation of Ag+ ions by oxidation of the metallic silver nanoparticles. Silver ions are probably responsible for the induction of oxidative stress. In
  • in EPR signal, no ROS could be detected after particle application alone. A lack of particle penetration with rather superficial radical production in response to UVB exposure could be an explanation. Similarly, no free radical production was detected in skin treated with silver nanoparticles (Figure
PDF
Album
Full Research Paper
Published 08 Dec 2014

Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity

  • Dan Lis and
  • Francesca Cecchet

Beilstein J. Nanotechnol. 2014, 5, 2275–2292, doi:10.3762/bjnano.5.237

Graphical Abstract
  • calculated that CARS amplification of benzene molecules close to silver particles, averaged over all scattering angles, could be as large as 1021 [50]. Then, in 1994, Liang et al. experimentally demonstrated an enhancement of the CARS signature of benzene in the bulk phase, by adding colloidal silver
  • nanoparticles directly into the liquid [79]. Although the phase matching condition was not fulfilled, the average particle spacing had been adjusted such as to be smaller than the coherence length, while the pump wavelength was matching the localized surface plasmon resonance of the silver NPs. In this first
PDF
Album
Review
Published 28 Nov 2014

Biopolymer colloids for controlling and templating inorganic synthesis

  • Laura C. Preiss,
  • Katharina Landfester and
  • Rafael Muñoz-Espí

Beilstein J. Nanotechnol. 2014, 5, 2129–2138, doi:10.3762/bjnano.5.222

Graphical Abstract
  • ” geometries. In a very recent work, Taheri et al. [63] have presented the formation of potato starch capsules decorated with silver nanoparticles, which could have applications as drug carriers or antibacterial coatings. The capsules are prepared in an inverse (water-in-oil) miniemulsion and the surfactant
PDF
Album
Review
Published 17 Nov 2014

Effect of silver nanoparticles on human mesenchymal stem cell differentiation

  • Christina Sengstock,
  • Jörg Diendorf,
  • Matthias Epple,
  • Thomas A. Schildhauer and
  • Manfred Köller

Beilstein J. Nanotechnol. 2014, 5, 2058–2069, doi:10.3762/bjnano.5.214

Graphical Abstract
  • of Duisburg-Essen, Universitaetsstr. 5-7, 45117 Essen, Germany 10.3762/bjnano.5.214 Abstract Background: Silver nanoparticles (Ag-NP) are one of the fastest growing products in nano-medicine due to their enhanced antibacterial activity at the nanoscale level. In biomedicine, hundreds of products
  • −, S2−) in the microenvironment considerably decreased the adverse effects of silver ions and silver nanoparticles, indicating that these ligands bind silver [18][23]. Today, Ag-NP are increasingly used because particles with sizes in the range of a few nanometers lead to a dramatic increase in the
  • [23][24]. Because of the high differentiating capacity of hMSCs they are an optimal cell model to analyze the possible influence of silver nanoparticles on cell differentiation. MSCs are neither transformed nor immortalized cells, rather, they represent primary pre-tissue cells. They can therefore be
PDF
Album
Full Research Paper
Published 10 Nov 2014

PVP-coated, negatively charged silver nanoparticles: A multi-center study of their physicochemical characteristics, cell culture and in vivo experiments

  • Sebastian Ahlberg,
  • Alexandra Antonopulos,
  • Jörg Diendorf,
  • Ralf Dringen,
  • Matthias Epple,
  • Rebekka Flöck,
  • Wolfgang Goedecke,
  • Christina Graf,
  • Nadine Haberl,
  • Jens Helmlinger,
  • Fabian Herzog,
  • Frederike Heuer,
  • Stephanie Hirn,
  • Christian Johannes,
  • Stefanie Kittler,
  • Manfred Köller,
  • Katrin Korn,
  • Wolfgang G. Kreyling,
  • Fritz Krombach,
  • Jürgen Lademann,
  • Kateryna Loza,
  • Eva M. Luther,
  • Marcelina Malissek,
  • Martina C. Meinke,
  • Daniel Nordmeyer,
  • Anne Pailliart,
  • Jörg Raabe,
  • Fiorenza Rancan,
  • Barbara Rothen-Rutishauser,
  • Eckart Rühl,
  • Carsten Schleh,
  • Andreas Seibel,
  • Christina Sengstock,
  • Lennart Treuel,
  • Annika Vogt,
  • Katrin Weber and
  • Reinhard Zellner

Beilstein J. Nanotechnol. 2014, 5, 1944–1965, doi:10.3762/bjnano.5.205

Graphical Abstract
  • main text. 10.3762/bjnano.5.205 Abstract PVP-capped silver nanoparticles with a diameter of the metallic core of 70 nm, a hydrodynamic diameter of 120 nm and a zeta potential of −20 mV were prepared and investigated with regard to their biological activity. This review summarizes the physicochemical
  • properties (dissolution, protein adsorption, dispersability) of these nanoparticles and the cellular consequences of the exposure of a broad range of biological test systems to this defined type of silver nanoparticles. Silver nanoparticles dissolve in water in the presence of oxygen. In addition, in
  • biological media (i.e., in the presence of proteins) the surface of silver nanoparticles is rapidly coated by a protein corona that influences their physicochemical and biological properties including cellular uptake. Silver nanoparticles are taken up by cell-type specific endocytosis pathways as
PDF
Album
Review
Published 03 Nov 2014

In vitro and in vivo interactions of selected nanoparticles with rodent serum proteins and their consequences in biokinetics

  • Wolfgang G. Kreyling,
  • Stefanie Fertsch-Gapp,
  • Martin Schäffler,
  • Blair D. Johnston,
  • Nadine Haberl,
  • Christian Pfeiffer,
  • Jörg Diendorf,
  • Carsten Schleh,
  • Stephanie Hirn,
  • Manuela Semmler-Behnke,
  • Matthias Epple and
  • Wolfgang J. Parak

Beilstein J. Nanotechnol. 2014, 5, 1699–1711, doi:10.3762/bjnano.5.180

Graphical Abstract
  • studies already described adverse effects of silver nanoparticles (AgNP) on the lungs [20][21][22][23][24][25]. However, information about the effects of AgNP on diseased lungs is lacking. So, the aim of the current study was to investigate the effects of AgNP on lungs, which were subsequently incubated
PDF
Album
Review
Published 02 Oct 2014

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • surface area, is known to alter the dissolution behaviour of nanoparticles [95][96]. This may lead to elevated ion release and associated toxicity with decreasing particle diameters. Prior studies with silver nanoparticles seem to indicate that their stability and size distributions may also be altered by
  • does not occur when the nanoparticles are coated by an albumin corona. In contrast, silver nanoparticles were toxic to oocytes and inhibited the maturation process (Figure 13A) [35]. In case of AuAg alloy nanoparticles, oocyte maturation was critically impaired at a GMF of 0.2, while for GMF > 0.2 no
  • studies, toxicity of silver nanoparticles is reported to be linked to Ag+ ion release [149][150], which may be a reasonable assumption for AuAg alloy nanoparticles. This hypothesis is backed by data from Besner and Meunier [29] who reported the significant onset of particle dissolution at GMF < 0.4, the
PDF
Album
Video
Review
Published 12 Sep 2014

Synthesis of hydrophobic photoluminescent carbon nanodots by using L-tyrosine and citric acid through a thermal oxidation route

  • Venkatesh Gude

Beilstein J. Nanotechnol. 2014, 5, 1513–1522, doi:10.3762/bjnano.5.164

Graphical Abstract
  • CNDs are also soluble in water under basic conditions. The effects of base and silver nanoparticles on the luminescence properties of CNDs were studied and a quenching of fluorescence was observed. These tyrosine-passivated CNDs are applicable for both biologically and commercially. Keywords
  • -passivated CNDs are insoluble in water under normal conditions, but soluble under basic conditions. The luminescence properties of the CNDs were investigated in organic solvents and in water under basic conditions. The basic aqueous solution of the CNDs was used to prepare a composite material with silver
  • nanoparticles (Ag NPs). The luminescence properties of the composite material solution were investigated and a quenching of emission intensity was observed. Results and Discussion Synthesis Hydrophobic photoluminescent CNDs were synthesized by a thermal oxidation process in air using citric acid and L-tyrosine
PDF
Album
Supp Info
Full Research Paper
Published 11 Sep 2014

Mimicking exposures to acute and lifetime concentrations of inhaled silver nanoparticles by two different in vitro approaches

  • Fabian Herzog,
  • Kateryna Loza,
  • Sandor Balog,
  • Martin J. D. Clift,
  • Matthias Epple,
  • Peter Gehr,
  • Alke Petri-Fink and
  • Barbara Rothen-Rutishauser

Beilstein J. Nanotechnol. 2014, 5, 1357–1370, doi:10.3762/bjnano.5.149

Graphical Abstract
  • Medicine, Department of Clinical Research, Inselspital University Hospital, University of Bern, Murtenstrasse 50, 3008 Bern, Switzerland 10.3762/bjnano.5.149 Abstract In the emerging market of nano-sized products, silver nanoparticles (Ag NPs) are widely used due to their antimicrobial properties. Human
  • –liquid exposure; dosimetry; lung cells in vitro; silver nanoparticles; toxicity; Introduction Silver possesses antiseptic and germicidal properties [1]. These effects are enhanced in combination with the possibilities of nanotechnology, when silver is manufactured as particles at the nanoscale. Defined
  • as objects with all three external dimensions between 1 and 100 nm [2], silver nanoparticles (Ag NPs) allow for a vast range of applications and are the most commonly used material in the emerging markets of nano-sized products [3][4][5][6]. Consumer applications using Ag NPs as antimicrobial agents
PDF
Album
Supp Info
Full Research Paper
Published 26 Aug 2014

Nanostructure sensitization of transition metal oxides for visible-light photocatalysis

  • Hongjun Chen and
  • Lianzhou Wang

Beilstein J. Nanotechnol. 2014, 5, 696–710, doi:10.3762/bjnano.5.82

Graphical Abstract
  • loaded with gold and silver nanoparticles exhibited anodic photocurrents in response to visible light irradiation [75]. Based on this finding, they proposed a charge transfer mechanism to explain the phenomenon. More specifically, due to the plasmon resonance effect, gold nanoparticles can be
PDF
Album
Review
Published 23 May 2014
Other Beilstein-Institut Open Science Activities