Search results

Search for "trapping" in Full Text gives 171 result(s) in Beilstein Journal of Nanotechnology.

Stable Au–C bonds to the substrate for fullerene-based nanostructures

  • Taras Chutora,
  • Jesús Redondo,
  • Bruno de la Torre,
  • Martin Švec,
  • Pavel Jelínek and
  • Héctor Vázquez

Beilstein J. Nanotechnol. 2017, 8, 1073–1079, doi:10.3762/bjnano.8.109

Graphical Abstract
  • spread of electronic coupling and conductance values [9][10][11][12]. For an archetypal electrode material in single molecule transport studies such as Au, however, their high mobility at room temperature can lead to a large spread in conductance or to problems in trapping the molecule at the interface
PDF
Album
Full Research Paper
Published 17 May 2017

Study of the surface properties of ZnO nanocolumns used for thin-film solar cells

  • Neda Neykova,
  • Jiri Stuchlik,
  • Karel Hruska,
  • Ales Poruba,
  • Zdenek Remes and
  • Ognen Pop-Georgievski

Beilstein J. Nanotechnol. 2017, 8, 446–451, doi:10.3762/bjnano.8.48

Graphical Abstract
  • layer arrangement, the light scattering and the consequent light trapping, caused by the interfaces with nano-scale roughness (front TCO–active layer and active layer–back reflector), increase the optical path inside in the thin silicon layer. These effects are observed in the weakly absorbing spectral
  • developed solar cells based on a three dimensional (3-D) design, in which periodically ordered zinc oxide nanocolumns (ZnO NCs) are used as a front electrode, have been of great interest, because they would exceed in the ultimate light trapping and provide excellent charge separation [5][6][7]. Due to the
PDF
Album
Supp Info
Full Research Paper
Published 16 Feb 2017

Fabrication of black-gold coatings by glancing angle deposition with sputtering

  • Alan Vitrey,
  • Rafael Alvarez,
  • Alberto Palmero,
  • María Ujué González and
  • José Miguel García-Martín

Beilstein J. Nanotechnol. 2017, 8, 434–439, doi:10.3762/bjnano.8.46

Graphical Abstract
  • properties of gold nanostructures are dominated by the existence of localized surface plasmon resonances (LSPRs), and that these LSPRs induce enhanced scattering, it is reasonable to assume that such low reflectance is due to the combined effect of the LSPRs and the light trapping associated with multiple
  • scattering that arises when those nanostructures are closely packed forming a non-periodic, non-uniformly sized array [15][16]. In particular, the high number of nanostructures and their broad height distribution favors multiple scattering processes, improving light trapping and increasing absorption
  • efficient light trapping (Figure 4b). It can be seen that the reflectance values shown by these samples are not as low as those obtained in the samples prepared with 87° and 85° tilt angle. Finally, the only common feature for all the nanostructured samples and the continuous film is a decrease in the
PDF
Album
Full Research Paper
Published 14 Feb 2017

Photocatalysis applications of some hybrid polymeric composites incorporating TiO2 nanoparticles and their combinations with SiO2/Fe2O3

  • Andreea Laura Chibac,
  • Tinca Buruiana,
  • Violeta Melinte and
  • Emil C. Buruiana

Beilstein J. Nanotechnol. 2017, 8, 272–286, doi:10.3762/bjnano.8.30

Graphical Abstract
  • recombination of electrons and holes by capturing photogenerated carriers. Also, the Fe3+ cation can separate the photo-excited electrons and holes and can extend their lifetime by acting as a temporary trapping site for photo-induced electrons and as a shallow capturing site for photo-induced holes [27][38
PDF
Album
Full Research Paper
Published 27 Jan 2017

Impact of contact resistance on the electrical properties of MoS2 transistors at practical operating temperatures

  • Filippo Giannazzo,
  • Gabriele Fisichella,
  • Aurora Piazza,
  • Salvatore Di Franco,
  • Giuseppe Greco,
  • Simonpietro Agnello and
  • Fabrizio Roccaforte

Beilstein J. Nanotechnol. 2017, 8, 254–263, doi:10.3762/bjnano.8.28

Graphical Abstract
  • 373 K, which was explained in terms of electron trapping at MoS2/SiO2 interface states. Keywords: contact resistance; mobility; MoS2; temperature dependence; threshold voltage; Introduction Transition metal dichalcogenides (TMDs) are compound materials formed by the Van der Waals stacking of MX2
  • interface traps exhibit a donor like behavior, i.e., they are positively charged above the Fermi level (when they are empty) and neutral below the Fermi level (when they are filled by electrons) [13]. Hence, electron trapping results in a neutralization of the interface states, resulting in a positive shift
  • at 298, 323, and 348 K, respectively, whereas a detrapped electron density Nit = 1.3 × 1011 cm−2 is obtained at 373 K (see Figure 5c). Electron trapping and detrapping at MoS2/SiO2 interface have been shown to be thermally activated processes [13]. Hence, for a given interface trap distribution Dit
PDF
Album
Full Research Paper
Published 25 Jan 2017

Flexible photonic crystal membranes with nanoparticle high refractive index layers

  • Torben Karrock,
  • Moritz Paulsen and
  • Martina Gerken

Beilstein J. Nanotechnol. 2017, 8, 203–209, doi:10.3762/bjnano.8.22

Graphical Abstract
  • molecule trapping [6], and surface emitting lasers [7]. Recently, flexible photonic crystal structures with elastomers as substrates have been investigated as strain sensors [8], for enhanced light out-coupling in flexible organic light emitting diodes [9][10], for photonic paper [11], and for pressure
PDF
Album
Full Research Paper
Published 20 Jan 2017

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • of the TiOx/Ti substrate, producing a monolithic electrochemical cell [22]. The device consists of a stacked, layered structure: TiOx/Ti/PtNps. The photo-activity of the material is related to the trapping and scavenging of holes due to the amorphous black layer and to the scavenging of electrons
  • (realised during the synthesis of the material). These defects on the surface favour the trapping of holes in specific superficial sites and facilitate the interaction with adhered molecules. Conclusion In conclusion, we have proposed a new, simple, scalable and environmentally friendly methodology for
PDF
Album
Full Research Paper
Published 19 Jan 2017

Optical and photocatalytic properties of TiO2 nanoplumes

  • Viviana Scuderi,
  • Massimo Zimbone,
  • Maria Miritello,
  • Giuseppe Nicotra,
  • Giuliana Impellizzeri and
  • Vittorio Privitera

Beilstein J. Nanotechnol. 2017, 8, 190–195, doi:10.3762/bjnano.8.20

Graphical Abstract
  • for the photocatalytic reaction is different for each type of sample. Moreover the dynamic mechanisms of liquid circulation around [22] and inside nanostructures are not obvious [23]. However, the possible enhancement in the light trapping efficiency could provide additional photogenerated carriers
PDF
Album
Full Research Paper
Published 18 Jan 2017

Effect of Anderson localization on light emission from gold nanoparticle aggregates

  • Mohamed H. Abdellatif,
  • Marco Salerno,
  • Gaser N. Abdelrasoul,
  • Ioannis Liakos,
  • Alice Scarpellini,
  • Sergio Marras and
  • Alberto Diaspro

Beilstein J. Nanotechnol. 2016, 7, 2013–2022, doi:10.3762/bjnano.7.192

Graphical Abstract
  • for surface plasmon polaritons at the interface between metallic and dielectric films [2][3]. Light trapping in amorphous aggregates of metal nanoparticles known as Anderson localization [3][4] can lead to pronounced optoelectronic effects. The photon interaction with a dense collection of states can
PDF
Album
Supp Info
Full Research Paper
Published 16 Dec 2016

Dynamic of cold-atom tips in anharmonic potentials

  • Tobias Menold,
  • Peter Federsel,
  • Carola Rogulj,
  • Hendrik Hölscher,
  • József Fortágh and
  • Andreas Günther

Beilstein J. Nanotechnol. 2016, 7, 1543–1555, doi:10.3762/bjnano.7.148

Graphical Abstract
  • as that used for the first cold-atom scanning probe microscope [29][52]. It uses standard cooling and trapping techniques to generate cold-atom tips of 87Rb atoms in an ultrahigh vacuum environment [53]. The trapping and manipulation of the cold-atom tip is achieved via a magnetic microchip, holding
  • a variety of micrometer-sized current conductors [54]. They produce magnetic trapping potentials that hold the cold-atom tip close to the chip surface. Tuning the microchip currents, not only the shape but also position and velocity of the cold-atom tip and the underlying potential can be precisely
  • to Zeeman splitting in presence of the trapping field, the transition frequency between these states is detuned to the zero-field resonance at 6.8 GHz. Depending on the microwave frequency, the outcoupling position can thus be tuned across the cloud. Each value of the microwave frequency addresses
PDF
Album
Full Research Paper
Published 31 Oct 2016

Photocurrent generation in carbon nanotube/cubic-phase HfO2 nanoparticle hybrid nanocomposites

  • Protima Rauwel,
  • Augustinas Galeckas,
  • Martin Salumaa,
  • Frédérique Ducroquet and
  • Erwan Rauwel

Beilstein J. Nanotechnol. 2016, 7, 1075–1085, doi:10.3762/bjnano.7.101

Graphical Abstract
  • , albeit with a notable discrepancy in the relative strength of the 3.1 eV emission component. In the case of free-standing cubic HfO2 nanoparticles, the nature of strong visible emission combines surface defects that act as charge trapping centers and oxygen vacancies due to the large presence of Hf3+ in
  • surface defects act as radiative centers upon contacting HfO2 NPs with CNTs (Figure 3a) and also produce a continuous, quantifiable photocurrent during the on cycle. The abrupt decrease to zero photocurrent during light-off conditions confirms that the remaining trapping centers and nonradiative
PDF
Album
Full Research Paper
Published 26 Jul 2016

Role of solvents in the electronic transport properties of single-molecule junctions

  • Katharina Luka-Guth,
  • Sebastian Hambsch,
  • Andreas Bloch,
  • Philipp Ehrenreich,
  • Bernd Michael Briechle,
  • Filip Kilibarda,
  • Torsten Sendler,
  • Dmytro Sysoiev,
  • Thomas Huhn,
  • Artur Erbe and
  • Elke Scheer

Beilstein J. Nanotechnol. 2016, 7, 1055–1067, doi:10.3762/bjnano.7.99

Graphical Abstract
  • breaking traces and histograms for Mes, EtOH, Tol and TCB, see Figure 7. A fast decrease is observed for EtOH and Mes. For Mes in the high-conductance range 10−2G0 < G occasionally a step-like behaviour occurs, see also Figure 2, indicating the trapping of molecules in the junctions. From the literature it
PDF
Album
Full Research Paper
Published 22 Jul 2016

Dielectrophoresis of gold nanoparticles conjugated to DNA origami structures

  • Anja Henning-Knechtel,
  • Matthew Wiens,
  • Mathias Lakatos,
  • Andreas Heerwig,
  • Frieder Ostermaier,
  • Nora Haufe and
  • Michael Mertig

Beilstein J. Nanotechnol. 2016, 7, 948–956, doi:10.3762/bjnano.7.87

Graphical Abstract
  • hybrid structures required a lower electrical field strength and frequency for a comparable trapping at the edges of the electrode structure. The nanoparticle conjugation additionally resulted in a remarkable alteration of the DNA structure arrangement. The growth of linear, chain-like structures in
  • influences the field gradients between two electrodes. This results in an inhomogeneous field around each post that enables multiple trapping of 2D as well as 3D hollow DNA origami structures using frequencies around 1.5 kHz and an electrical field strength between 5·104 V/m and 2.1·105 V/m. Herein we show
  • that DNA origami trapping can be considerably influenced by the attachment of nanometer-sized, polarizable particles that act as supported floating nanoelectrodes, and thus, as field concentrators. Results and Discussion For our studies, we focused on a 414 nm long, tubular DNA-origami structure, a so
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2016

Reorientation of single-wall carbon nanotubes in negative anisotropy liquid crystals by an electric field

  • Amanda García-García,
  • Ricardo Vergaz,
  • José F. Algorri,
  • Gianluigi Zito,
  • Teresa Cacace,
  • Antigone Marino,
  • José M. Otón and
  • Morten A. Geday

Beilstein J. Nanotechnol. 2016, 7, 825–833, doi:10.3762/bjnano.7.74

Graphical Abstract
  • important because high power may cause optical trapping [29]. The optical trapping power depends on several factors (e.g., SWCNT length-to-diameter ratio, dispersed material) [30]. Therefore, the incident beam power was checked several times to avoid the optical trapping effect in this specific study. The
PDF
Album
Full Research Paper
Published 08 Jun 2016

High-resolution noncontact AFM and Kelvin probe force microscopy investigations of self-assembled photovoltaic donor–acceptor dyads

  • Benjamin Grévin,
  • Pierre-Olivier Schwartz,
  • Laure Biniek,
  • Martin Brinkmann,
  • Nicolas Leclerc,
  • Elena Zaborova and
  • Stéphane Méry

Beilstein J. Nanotechnol. 2016, 7, 799–808, doi:10.3762/bjnano.7.71

Graphical Abstract
  • mesoscopic scale (Figure 7), it can be clearly seen that the surface potential shifts downwards upon illumination, resulting in a negative surface photo-voltage. The potential shift is completely reversible (Figure S4 in Supporting Information File 1), revealing the absence of permanent charge trapping
PDF
Album
Supp Info
Full Research Paper
Published 03 Jun 2016

Comparative kinematical analyses of Venus flytrap (Dionaea muscipula) snap traps

  • Simon Poppinga,
  • Tim Kampowski,
  • Amélie Metzger,
  • Olga Speck and
  • Thomas Speck

Beilstein J. Nanotechnol. 2016, 7, 664–674, doi:10.3762/bjnano.7.59

Graphical Abstract
  • displacement. The question if trapping events under water occur only occasionally and by coincidence is also a matter for possible future studies. The factor “prey attraction” should additionally be analyzed, i.e., to what extent it plays a role for the submersed plant. Moreover, future studies could also
  • evolved a remarkable trapping system that functions as well in air as under water, and which can be considered as an optimized system for nutrient acquisition of a carnivorous plant growing in seasonally inundated habitats. Similar reports on carnivorous plants with traps functioning under different
  • environmental conditions are, e.g., the resinous Roridula sticky traps [37] and the rainwater-dependent pitfall trapping systems in Nepenthes [38][39]. The Dionaea trap is not “only” a “simple” snap trap but possesses different snapping modes, movement mechanics and actuation principles, which greatly broadens
PDF
Album
Supp Info
Full Research Paper
Published 04 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • exposed serine by a cysteine residue, which then was equipped with its analogue Sec through heterologous expression in a bacterial system auxotrophic in cysteine (Figure 7). Not only did this protein organize itself into higher-order complexes under suitable conditions, after trapping reduced glutathione
  • the fabrication of microfluidic devices by master-replication techniques, was already shown to allow a site-specific bottom-up integration of TMV carrier sticks [60]. This was achieved via isothiocyanate- (ITC-) based coupling of single-stranded (ss) DNA anchors, subsequent trapping of the 3'-ends of
PDF
Album
Review
Published 25 Apr 2016

Active multi-point microrheology of cytoskeletal networks

  • Tobias Paust,
  • Tobias Neckernuss,
  • Lina Katinka Mertens,
  • Ines Martin,
  • Michael Beil,
  • Paul Walther,
  • Thomas Schimmel and
  • Othmar Marti

Beilstein J. Nanotechnol. 2016, 7, 484–491, doi:10.3762/bjnano.7.42

Graphical Abstract
  • the particle motion is described in [7][24][30]. The laser trapping was realized with an optical tweezers setup consisting of a Nd:YAG laser (Coherent Compass 1064-500) with a wavelength of 1064 nm and maximal power of 500 mW. The used trap stiffness of 9.8 pN/μm was calibrated and adjusted prior to
  • trap. To ensure beam symmetry, the trapping beam pivots at the back focal plane of the objective. The setup of the optical tweezers and a screenshot of the measurement of several particles in an in vitro assembled intermediate filament network are shown in Figure 4B,C. SEM images of the crosslinked
  • , center 0.25 mM, right 1 mM Mg2+). The scale bar for all three pictures shows a length of 500 nm. B) Setup of the measurement device (optical tweezers). The laser beam is focused into the sample to allow for the trapping of microspheres. An acousto-optical deflector (AOD) ensures the oscillation of the
PDF
Album
Full Research Paper
Published 24 Mar 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
PDF
Album
Review
Published 01 Feb 2016

Single-molecule mechanics of protein-labelled DNA handles

  • Vivek S. Jadhav,
  • Dorothea Brüggemann,
  • Florian Wruck and
  • Martin Hegner

Beilstein J. Nanotechnol. 2016, 7, 138–148, doi:10.3762/bjnano.7.16

Graphical Abstract
  • TICO buffer. However, a strong tendency of unfavourable bead clustering was witnessed in the microfluidic channel of our flow cell when DNA tethering and optical trapping were performed in high Mg TICO buffer. For future experiments involving the ribosomal machinery we therefore recommend the use of
PDF
Album
Full Research Paper
Published 29 Jan 2016

Charge injection and transport properties of an organic light-emitting diode

  • Peter Juhasz,
  • Juraj Nevrela,
  • Michal Micjan,
  • Miroslav Novota,
  • Jan Uhrik,
  • Lubica Stuchlikova,
  • Jan Jakabovic,
  • Ladislav Harmatha and
  • Martin Weis

Beilstein J. Nanotechnol. 2016, 7, 47–52, doi:10.3762/bjnano.7.5

Graphical Abstract
  • . Note that the effective charge mobility μeff includes charge trapping phenomenon as follows, where μ0 is trap-free charge mobility, nmob and ntrap are mobile and trapped charge carrier densities, respectively. In the voltage region from 2 to 3 V an abrupt increase of the current density is observed
  • trapping mechanism. At voltages higher than 3 V the rise of current density slows down to J V3 and follows two-carrier space-charge limited conditions (2C-SCLC), where ε is the dielectric constant of the organic film, μe and μh are electron and hole mobilities, respectively, and τ is carrier lifetime [13
PDF
Album
Full Research Paper
Published 14 Jan 2016

Electrochemical behavior of polypyrrol/AuNP composites deposited by different electrochemical methods: sensing properties towards catechol

  • Celia García-Hernández,
  • Cristina García-Cabezón,
  • Cristina Medina-Plaza,
  • Fernando Martín-Pedrosa,
  • Yolanda Blanco,
  • José Antonio de Saja and
  • María Luz Rodríguez-Méndez

Beilstein J. Nanotechnol. 2015, 6, 2052–2061, doi:10.3762/bjnano.6.209

Graphical Abstract
  • the electrooxidation of the pyrrole monomer in the presence of colloidal gold nanoparticles, referred to as trapping method (T), and the second one by electrodeposition of both components from one solution containing the monomer and a gold salt, referred to as cogeneration method (C). In both cases
  • incorporated in the Ppy films was higher when electropolymerization was carried out by chronopotentiometry (CP). Besides, cogeneration method allowed for the incorporation of a higher number of AuNPs than trapping. Impedance experiments demonstrated that the insertion of AuNPs increased the conductivity. As an
  • electrochemical sensor, the Ppy/AuNp deposited on platinum exhibited a strong electrocatalytic activity towards the oxidation of catechol. The effect was higher in films obtained by CP than in films obtained by chronoamperometry (CA). The influence of the method used to introduce the AuNPs (trapping or
PDF
Album
Full Research Paper
Published 21 Oct 2015

Transformations of PTCDA structures on rutile TiO2 induced by thermal annealing and intermolecular forces

  • Szymon Godlewski,
  • Jakub S. Prauzner-Bechcicki,
  • Thilo Glatzel,
  • Ernst Meyer and
  • Marek Szymoński

Beilstein J. Nanotechnol. 2015, 6, 1498–1507, doi:10.3762/bjnano.6.155

Graphical Abstract
  • substrate maintained at an elevated temperature leads to the formation of similar structures. The likeness of these results indicates that the obtained structures are formed due to the equilibration of the system and not through kinetic trapping. At this point, it is worth comparing the behaviour of the
PDF
Album
Full Research Paper
Published 10 Jul 2015

Electronic interaction in composites of a conjugated polymer and carbon nanotubes: first-principles calculation and photophysical approaches

  • Florian Massuyeau,
  • Jany Wéry,
  • Jean-Luc Duvail,
  • Serge Lefrant,
  • Abu Yaya,
  • Chris Ewels and
  • Eric Faulques

Beilstein J. Nanotechnol. 2015, 6, 1138–1144, doi:10.3762/bjnano.6.115

Graphical Abstract
  • approach assumes that the radiative and non-radiative lifetimes τr, τnr can be expressed as a function of the PL quantum yield Q, , . τnr accounts for phonon emission, intersystem crossing to triplet states, trapping at chemical defects and exciton migration/dissociation. For standard PPV (x = 0%) we find
PDF
Album
Full Research Paper
Published 08 May 2015

Electron-stimulated purification of platinum nanostructures grown via focused electron beam induced deposition

  • Brett B. Lewis,
  • Michael G. Stanford,
  • Jason D. Fowlkes,
  • Kevin Lester,
  • Harald Plank and
  • Philip D. Rack

Beilstein J. Nanotechnol. 2015, 6, 907–918, doi:10.3762/bjnano.6.94

Graphical Abstract
  • concentration is believed to be localized near the Pt–PtCx interface due to limited diffusion and trapping at Pt nanoparticles and the purification front, we compare in Figure 4c the normalized purification rate (normalized to 5 keV and adjusted for different currents) from Figure 4a and the near surface energy
  • which is a function of both the electron energy loss and oxygen concentration. Importantly, the purification front propagates from the top–down which suggests a preferential trapping or limited permeation of the O2 reactive gas. A model based on a 2nd order reaction rate was also demonstrated, which
PDF
Album
Full Research Paper
Published 08 Apr 2015
Other Beilstein-Institut Open Science Activities