Search results

Search for "Raman" in Full Text gives 473 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Simple synthesis of nanosheets of rGO and nitrogenated rGO

  • Pallellappa Chithaiah,
  • Madhan Mohan Raju,
  • Giridhar U. Kulkarni and
  • C. N. R. Rao

Beilstein J. Nanotechnol. 2020, 11, 68–75, doi:10.3762/bjnano.11.7

Graphical Abstract
  • ° does not appear indicating that the precursors were directly converted into rGO and N-rGO nanosheets. Figure 2 shows the Raman spectra of the rGO and N-rGO nanosheets. The Raman spectrum of the rGO sample (Figure 2a) shows D, G and 2D band at, respectively, 1362, 1594 and 2880 cm−1. The spectrum of the
  • -hybridized carbon atoms in the rGO domains. The 2D-band is the second order of the D-band. The Raman results are consistent with previous reports [5]. Thermogravimetric analysis (TGA) was carried out to investigate the thermal stability of the rGO and N-rGO nanosheets. The study was performed in an oxygen
  • and 600 °C as well. The corresponding XRD patterns, Raman spectra and SEM images are given in Figure S1 and Figure S2, respectively, in Supporting Information File 1. In order to understand the supercapacitor behavior of rGO and H-rGO (hydrogen-treated rGO) samples, we have carried out cyclic
PDF
Album
Supp Info
Full Research Paper
Published 07 Jan 2020

Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts

  • Maximilian Wassner,
  • Markus Eckardt,
  • Andreas Reyer,
  • Thomas Diemant,
  • Michael S. Elsaesser,
  • R. Jürgen Behm and
  • Nicola Hüsing

Beilstein J. Nanotechnol. 2020, 11, 1–15, doi:10.3762/bjnano.11.1

Graphical Abstract
  • ) and (101) crystal planes of the graphite lattice. All Raman spectra (Figure 6 and Table 3) of the N-doped carbon spheres show two bands at ca. 1350 cm−1 (D band) and ca. 1600 cm−1 (G band). The G band is due to the E2g in-plane vibration mode of the graphite lattice and hence assigned to the sp2
  • nitriding temperature, the microporosity increases strongly (Figure 9) and additionally we found a slight increase of the amount of graphenic structures in the catalysts, as indicated by the peak narrowing in the XRD patterns and the decreasing AD/AG ratio in the Raman signals. These structural changes may
  • method of Brunauer, Emmett, and Teller in a relative pressure range of p/p0 0.01 to 0.3. The ratio of micropore surface area to external surface area was calculated by the t-plot method (thickness curve: carbon black STSA, fitted thickness range: 0.4–0.6 nm). Raman spectroscopy measurements were
PDF
Album
Full Research Paper
Published 02 Jan 2020

Label-free highly sensitive probe detection with novel hierarchical SERS substrates fabricated by nanoindentation and chemical reaction methods

  • Jingran Zhang,
  • Tianqi Jia,
  • Yongda Yan,
  • Li Wang,
  • Peng Miao,
  • Yimin Han,
  • Xinming Zhang,
  • Guangfeng Shi,
  • Yanquan Geng,
  • Zhankun Weng,
  • Daniel Laipple and
  • Zuobin Wang

Beilstein J. Nanotechnol. 2019, 10, 2483–2496, doi:10.3762/bjnano.10.239

Graphical Abstract
  • surface-enhanced Raman scattering (SERS) substrates. Recently, in order to obtain a higher enhancement factor at a lower detection limit, hierarchical structures, including nanostructures and nanoparticles, appear to be viable SERS substrate candidates. Here we describe a novel method integrating the
  • solution on the Raman intensities of the SERS substrate with hierarchical structures are experimentally studied. The intensity and distribution of the electric field of single and multiple Ag nanoparticles on the surface of a plane and with multiple micro/nanostructures are studied with COMSOL software
  • sensitive, hierarchical SERS substrate. Keywords: Ag nanoparticles; hierarchical substrates; malachite green molecules; nanoindentation; nanostructures; R6G; SERS; Introduction Surface-enhanced Raman scattering (SERS) has triggered significant research interest due to its suitability as an analytical tool
PDF
Album
Full Research Paper
Published 13 Dec 2019

Semitransparent Sb2S3 thin film solar cells by ultrasonic spray pyrolysis for use in solar windows

  • Jako S. Eensalu,
  • Atanas Katerski,
  • Erki Kärber,
  • Lothar Weinhardt,
  • Monika Blum,
  • Clemens Heske,
  • Wanli Yang,
  • Ilona Oja Acik and
  • Malle Krunks

Beilstein J. Nanotechnol. 2019, 10, 2396–2409, doi:10.3762/bjnano.10.230

Graphical Abstract
  • pattern of the vacuum-annealed sample matched orthorhombic Sb2S3 (ICDD PDF 01-075-4012). The Raman spectrum of the as-deposited Sb2S3 layer contains two broad bands (Figure 1e), which are characteristic of amorphous Sb2S3 [28][46]. After vacuum annealing, characteristic narrower bands of Sb2S3 are
  • detected, which is an expected result when crystalline Sb2S3 is formed [28][46][49]. No traces of additional phases were detected by either XRD or Raman in any glass/ITO/TiO2/Sb2S3 samples. Chlorine, which could originate from the SbCl3 precursor, was not detected by energy-dispersive X-ray spectroscopy
  • phase composition were characterized by XRD (Rigaku Ultima IV, θ-2θ, Cu Kα1 λ = 1.5406 Å, 40 kV, 40 mA, step 0.02°, 5° min−1, Si strip detector D/teX Ultra) and Raman spectroscopy (Horiba Labram HR 800, backscattering mode, ≈143 µW µm−2). The elemental composition of glass/ITO/TiO2/Sb2S3 samples and
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2019

Deterministic placement of ultra-bright near-infrared color centers in arrays of silicon carbide micropillars

  • Stefania Castelletto,
  • Abdul Salam Al Atem,
  • Faraz Ahmed Inam,
  • Hans Jürgen von Bardeleben,
  • Sophie Hameau,
  • Ahmed Fahad Almutairi,
  • Gérard Guillot,
  • Shin-ichiro Sato,
  • Alberto Boretti and
  • Jean Marie Bluet

Beilstein J. Nanotechnol. 2019, 10, 2383–2395, doi:10.3762/bjnano.10.229

Graphical Abstract
  • micro-PL was performed using the Micro-Raman spectrometer LabRAM HR Evolution from HORIBA, equipped with a 785 nm laser. The laser is focused via a 100× 0.9 NA objective on the pillars and on the area with no pillars (gap) at the irradiation depth. The emitted photoluminescence is collected with the
  • University. We thank Prof B. Gibson for the access to the laboratories at the ARC Centre of Excellence for Nanoscale Biophotonics. We thank RMIT University Micro Nano Research facility for the use of the Horiba Raman system. S.-I.S. acknowledges JSPS KAKENHI Grant Numbers 17KK0137 and JP18H01483. A.F.A
PDF
Album
Full Research Paper
Published 05 Dec 2019

Multiwalled carbon nanotube based aromatic volatile organic compound sensor: sensitivity enhancement through 1-hexadecanethiol functionalisation

  • Nadra Bohli,
  • Meryem Belkilani,
  • Juan Casanova-Chafer,
  • Eduard Llobet and
  • Adnane Abdelghani

Beilstein J. Nanotechnol. 2019, 10, 2364–2373, doi:10.3762/bjnano.10.227

Graphical Abstract
  • attachment of 1-hexadecanethiol on the Au-MWCNT sensor layer. The corresponding S–H stretch vibration mode band is found at 2360 cm−1 [27][28][29][30]. Moreover, other techniques were used for thiol monolayer characterisation. In previous work [31][32], different thiol chains were characterized by Raman
PDF
Album
Supp Info
Full Research Paper
Published 04 Dec 2019

Integration of sharp silicon nitride tips into high-speed SU8 cantilevers in a batch fabrication process

  • Nahid Hosseini,
  • Matthias Neuenschwander,
  • Oliver Peric,
  • Santiago H. Andany,
  • Jonathan D. Adams and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2019, 10, 2357–2363, doi:10.3762/bjnano.10.226

Graphical Abstract
  • ], high-resolution electrochemical and nanoelectrical imaging [7][8], Raman spectroscopy [9], nanoindentation [10], nanomechanical machining [11], plasmonic applications [12][13] and microscale grapping [14]. In parallel with the development of AFM cantilevers made out of traditional materials (e.g
PDF
Album
Full Research Paper
Published 29 Nov 2019

The role of Ag+, Ca2+, Pb2+ and Al3+ adions in the SERS turn-on effect of anionic analytes

  • Stefania D. Iancu,
  • Andrei Stefancu,
  • Vlad Moisoiu,
  • Loredana F. Leopold and
  • Nicolae Leopold

Beilstein J. Nanotechnol. 2019, 10, 2338–2345, doi:10.3762/bjnano.10.224

Graphical Abstract
  • -Napoca, Romania 10.3762/bjnano.10.224 Abstract In our recent studies we highlighted the role of adsorbed ions (adions) in turning on the surface-enhanced Raman scattering (SERS) effect in a specific mode for anionic and cationic analytes. In this work, we emphasize the role of Ag+, Ca2+, Pb2+ and Al3
  • of higher affinities to the silver surface as indicated by the SERS spectra of corresponding mixed solutions. Keywords: adion-specific adsorption model; cation bridging; Raman; surface enhanced Raman scattering (SERS); Introduction Surface-enhanced Raman scattering (SERS) is an ultrasensitive
  • +–halide–organic molecule is formed that allows a charge transfer between the metal surface and the molecule leading to a resonant Raman scattering effect [6][7][8]. Evidence for surface complexes were provided by several SERS experiments on silver electrodes [3][8], but also on colloidal silver
PDF
Album
Supp Info
Full Research Paper
Published 27 Nov 2019

Design and facile synthesis of defect-rich C-MoS2/rGO nanosheets for enhanced lithium–sulfur battery performance

  • Chengxiang Tian,
  • Juwei Wu,
  • Zheng Ma,
  • Bo Li,
  • Pengcheng Li,
  • Xiaotao Zu and
  • Xia Xiang

Beilstein J. Nanotechnol. 2019, 10, 2251–2260, doi:10.3762/bjnano.10.217

Graphical Abstract
  • -rays as the excitation source. Raman spectra were collected using a Witec alpha 300M+ instrument with an excitation laser wavelength of 488 nm. Nitrogen adsorption–desorption isotherm measurements were conducted at 77 K using a micromeritics system (JW-BK132F). The contents of amorphous carbon, rGO and
  • indicates that the annealing treatment improves the crystallinity of the composites. Figure 4b and Figure S2 (Supporting Information File 1) show the Raman spectra of pristine MoS2, and C-MoS2/rGO, C-MoS2/rGO-6, C-MoS2/rGO-4 and C-MoS2/rGO-8 composites. Two clear peaks at about 378 cm−1 and 404 cm−1 show in
  • all curves of MoS2, consistent with the in-plane and out-of-plane A1g vibrations of pristine MoS2, respectively [37]. In addition to these peaks from pristine MoS2, the Raman spectra of C-MoS2/rGO, C-MoS2/rGO-6, C-MoS2/rGO-4 and C-MoS2/rGO-8 exhibit two broad bands at 1363 cm−1 (D-band) and 1587 cm−1
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2019

A novel all-fiber-based LiFePO4/Li4Ti5O12 battery with self-standing nanofiber membrane electrodes

  • Li-li Chen,
  • Hua Yang,
  • Mao-xiang Jing,
  • Chong Han,
  • Fei Chen,
  • Xin-yu Hu,
  • Wei-yong Yuan,
  • Shan-shan Yao and
  • Xiang-qian Shen

Beilstein J. Nanotechnol. 2019, 10, 2229–2237, doi:10.3762/bjnano.10.215

Graphical Abstract
  • and Li5Ti4O12 fibers in Figure 4 reveals that the active particles are uniformly distributed on the surface of the fibers, in agreement with the SEM images. EDS analysis shows either Fe, C, P, and O or Ti, C, and O on the fibers. The fibers were further examined using XRD and Raman spectroscopy. The
  • reductive inert atmosphere. However, TiO2 itself is a relatively stable anode material [42], so the appearance of such impurities would not affect the performance of the electrode. The Raman spectra of the two fiber materials in Figure 6 show two characteristic peaks at 1350 cm−1 and 1580 cm−1 corresponding
  • 1; (d) EDS of Li4Ti5O12 at site 2. XRD patterns of LiFePO4 and Li4Ti5O12 fiber membranes. Raman spectra of LiFePO4 and Li4Ti5O12 fiber membranes. CV curves of LiFePO4 and Li4Ti5O12 fiber membrane electrodes. Charge–discharge curves of LiFePO4 and Li4Ti5O12 fiber membrane electrodes. EIS curves of
PDF
Album
Supp Info
Full Research Paper
Published 13 Nov 2019

Microbubbles decorated with dendronized magnetic nanoparticles for biomedical imaging: effective stabilization via fluorous interactions

  • Da Shi,
  • Justine Wallyn,
  • Dinh-Vu Nguyen,
  • Francis Perton,
  • Delphine Felder-Flesch,
  • Sylvie Bégin-Colin,
  • Mounir Maaloum and
  • Marie Pierre Krafft

Beilstein J. Nanotechnol. 2019, 10, 2103–2115, doi:10.3762/bjnano.10.205

Graphical Abstract
  • microscopy (Rmean (optical, µm)), the bubble radius obtained by the acoustical method (Raman (acoustical, µm)) and the determined half-life of the bubbles (t1/2 (h)). Supporting Information Supporting Information File 324: Additional spectra. Acknowledgements The authors acknowledge the European Regional
PDF
Album
Supp Info
Full Research Paper
Published 31 Oct 2019

Green and scalable synthesis of nanocrystalline kuramite

  • Andrea Giaccherini,
  • Giuseppe Cucinotta,
  • Stefano Martinuzzi,
  • Enrico Berretti,
  • Werner Oberhauser,
  • Alessandro Lavacchi,
  • Giovanni Orazio Lepore,
  • Giordano Montegrossi,
  • Maurizio Romanelli,
  • Antonio De Luca,
  • Massimo Innocenti,
  • Vanni Moggi Cecchi,
  • Matteo Mannini,
  • Antonella Buccianti and
  • Francesco Di Benedetto

Beilstein J. Nanotechnol. 2019, 10, 2073–2083, doi:10.3762/bjnano.10.202

Graphical Abstract
  • of nanocrystalline kuramite by means of a simpler, greener and scalable solvothermal synthesis. We exploited a multianalytical characterization approach (X-ray diffraction, extended X-ray absorption fine structure, field emission scanning electron microscopy, Raman spectroscopy and electronic
  • microscopy (SEM), principal component analysis (PCA) of the wavelength dispersion spectroscopy (WDS) data, X-ray absorption spectroscopy (XAS) and Raman spectroscopy. Materials and Methods Synthesis The reactants necessary for the three syntheses are: CuCl2·2H2O (Merck), ZnCl2 (Merck), SnCl2·2H2O (Riedel-de
  • ][55]. Raman spectroscopy was performed with a He–Ne laser source emitting at 632.8 nm with a laser spot on the sample of about 10 μm2. The main reference for the positions of the Raman peaks is from the RRUFF database [56]. XAS measurements at Cu and Sn K-edge (8978.9 and 29200.1 eV, respectively
PDF
Album
Supp Info
Full Research Paper
Published 29 Oct 2019

Review of advanced sensor devices employing nanoarchitectonics concepts

  • Katsuhiko Ariga,
  • Tatsuyuki Makita,
  • Masato Ito,
  • Taizo Mori,
  • Shun Watanabe and
  • Jun Takeya

Beilstein J. Nanotechnol. 2019, 10, 2014–2030, doi:10.3762/bjnano.10.198

Graphical Abstract
  • devices. Of course, all important sensor activities cannot be described in this review. For example, sensors based on various advanced physical mechanisms such as plasmonic [194], dielectric sensing [195], surface-enhanced Raman scattering [196], Fabry–Pérot-based intraocular pressure [197], and/or novel
PDF
Album
Review
Published 16 Oct 2019

Magnetic properties of biofunctionalized iron oxide nanoparticles as magnetic resonance imaging contrast agents

  • Natalia E. Gervits,
  • Andrey A. Gippius,
  • Alexey V. Tkachev,
  • Evgeniy I. Demikhov,
  • Sergey S. Starchikov,
  • Igor S. Lyubutin,
  • Alexander L. Vasiliev,
  • Vladimir P. Chekhonin,
  • Maxim A. Abakumov,
  • Alevtina S. Semkina and
  • Alexander G. Mazhuga

Beilstein J. Nanotechnol. 2019, 10, 1964–1972, doi:10.3762/bjnano.10.193

Graphical Abstract
  • nanoparticles designed for use as MRI contrast media are precisely examined by a variety of methods: powder X-ray diffraction (XRD), transmission electron microscopy (TEM), Raman spectroscopy, Mössbauer spectroscopy and zero-field nuclear magnetic resonance (ZF-NMR) spectroscopy. TEM and XRD measurements reveal
  • a spherical shape of the nanoparticles with an average diameter of 5–8 nm and a cubic spinel-type crystal structure of space group Fd−3m. Raman, Mössbauer and NMR spectroscopy clearly indicate the presence of the maghemite γ-Fe2O3 phase. Moreover, a difference in the magnetic behavior of uncoated
  • spectroscopy; MRI contrast agents; nanocrystalline materials; NMR spectroscopy; Raman spectroscopy; Introduction Nowadays, magnetic nanoparticles (MNPs) are widely used in biology and medicine. A large number of studies [1][2][3][4] have shown different prospects of their use for sample preparation, in
PDF
Album
Full Research Paper
Published 02 Oct 2019

First principles modeling of pure black phosphorus devices under pressure

  • Ximing Rong,
  • Zhizhou Yu,
  • Zewen Wu,
  • Junjun Li,
  • Bin Wang and
  • Yin Wang

Beilstein J. Nanotechnol. 2019, 10, 1943–1951, doi:10.3762/bjnano.10.190

Graphical Abstract
  • orthorhombic semiconductor to a simple cubic metal with increasing pressure by performing in situ ADXRD and Raman spectroscopy with the assistance of a DAC apparatus. They also carried out first principles calculations to interpret the metallic behavior of BP under pressure. Pablo et al. investigated the
PDF
Album
Full Research Paper
Published 24 Sep 2019

Facile synthesis of carbon nanotube-supported NiO//Fe2O3 for all-solid-state supercapacitors

  • Shengming Zhang,
  • Xuhui Wang,
  • Yan Li,
  • Xuemei Mu,
  • Yaxiong Zhang,
  • Jingwei Du,
  • Guo Liu,
  • Xiaohui Hua,
  • Yingzhuo Sheng,
  • Erqing Xie and
  • Zhenxing Zhang

Beilstein J. Nanotechnol. 2019, 10, 1923–1932, doi:10.3762/bjnano.10.188

Graphical Abstract
  • different mass loadings (Supporting Information File 1, Figure S3b), indicating the consistent synthesis of Fe2O3. In addition, no other diffraction peaks of impurities are observed, demonstrating the successful synthesis of pure Fe2O3. Furthermore, Raman spectra (Figure 3b) shows three peaks at 359, 505
  • both XRD pattern and Raman spectra indicate that Fe2O3 is not well crystallized since it was formed at 70 °C in the drying oven without further annealing. The XPS spectrum in Figure S5a (Supporting Information File 1) shows the existence of Fe, O, and C elements in CC-CNT@Fe2O3. The Fe 2p spectrum
  • 530.13 eV, corresponding to C–O, Fe–O–C, and Fe–O, respectively [30]. The XPS results strongly support the XRD and Raman results and confirm Fe2O3 on the CC-CNT. A three-electrode system was used to examine the electrochemical characteristics of the CC-CNT@Fe2O3 with Pt foil as a counter electrode, SCE
PDF
Album
Supp Info
Full Research Paper
Published 23 Sep 2019

Charge-transfer interactions between fullerenes and a mesoporous tetrathiafulvalene-based metal–organic framework

  • Manuel Souto,
  • Joaquín Calbo,
  • Samuel Mañas-Valero,
  • Aron Walsh and
  • Guillermo Mínguez Espallargas

Beilstein J. Nanotechnol. 2019, 10, 1883–1893, doi:10.3762/bjnano.10.183

Graphical Abstract
  • needle-like morphology of C60@MUV-2 also remained similar to the one of MUV-2 as confirmed by scanning electron microscopy (SEM) (Figure S1, Supporting Information File 1). Raman and UV–vis spectroscopy Raman spectra of C60, MUV-2 and C60@MUV-2 crystals were measured using a Raman excitation wavelength
  • of 785 nm (Figure 3a). The presence of Raman bands at 218, 284 and 490 cm−1 evidences the encapsulation of C60 in MUV-2, whereas the broadening and shifting of the bands towards higher frequencies are indicative of the charge-transfer (CT) interactions between the electron-acceptor C60 and the
  • ). Raman spectra were acquired with a micro-Raman (model XploRA ONE from Horiba, Kyoto, Japan) with a grating of 1200 gr/mm and a wavelength of 785 nm. UV–vis absorption spectra were recorded on a Jasco V-670 spectrophotometer in baseline mode from 400 to 800 nm range. The absorption spectra were measured
PDF
Album
Supp Info
Full Research Paper
Published 18 Sep 2019

Remarkable electronic and optical anisotropy of layered 1T’-WTe2 2D materials

  • Qiankun Zhang,
  • Rongjie Zhang,
  • Jiancui Chen,
  • Wanfu Shen,
  • Chunhua An,
  • Xiaodong Hu,
  • Mingli Dong,
  • Jing Liu and
  • Lianqing Zhu

Beilstein J. Nanotechnol. 2019, 10, 1745–1753, doi:10.3762/bjnano.10.170

Graphical Abstract
  • . Interestingly, although all of the TMDCs have the same formula, the atomic structure of 1T’-phase WTe2 is totally different from the other TMDCs. 1T’-WTe2 exhibits a distorted structure relative to the 1T’ phase. Both Raman [23][24] and first-principles [25][26] calculations have been used to indicate that
  • characterization the natural anisotropy of 1T’-WTe2. In this paper, we present a combined experimental and quantitative study on the anisotropic optical and electronic properties of mechanically isolated 1T’-WTe2. Through a systematic characterization including Raman spectroscopy, X-ray photoelectron spectroscopy
  • parameters to be a ≈ 3.49 Å and b ≈ 6.32 Å, respectively, which are in excellent agreement with a previous report [28]. In order to gain further information on the crystal structure, Raman spectroscopy was performed on 1T’-WTe2 nanosheets, as shown Figure 1d. All of the peak positions are consistent with
PDF
Album
Correction
Full Research Paper
Published 20 Aug 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • typical amorphous state with two weak diffraction peaks at about 25° and 48°, and the peaks of the Al3Ti and Al phases were absent, indicating almost complete dissolution of Al and the formation of amorphous TiO2. Figure 2b shows the Raman spectra of TiO2, GO and the TiO2/GO composite. The Raman spectrum
  • structure with wrinkles and folds, which is in line with previous works [39]. The EDS elemental mapping of titanium, oxygen and carbon provide additional evidence to further show the GO uniform distribution on the TiO2 particle, as shown in Figure 3i–k. Moreover, based on the Raman and TEM results, the TiO2
  • after 12 hours. Hence, the TiO2/GO-coated separator effectively adsorbed and blocked the transportation of Li2S6. Raman and Fourier-transform infrared spectroscopy (FTIR) analysis was carried out to understand the interaction between TiO2/GO and polysulfides (Figure 10). The TiO2/GO composite was
PDF
Album
Full Research Paper
Published 19 Aug 2019

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • applied to PAN-based felts to increase the amount of defects. The normalized spectra obtained for the Raman measurements are shown in Figure 1. In order to investigate the degree of graphitization and defects formed during the plasma treatment process, the intensity of the G- and D-band centered at 1590
  • information about the extent of defects in a graphite material [17][18]. From the Raman spectral analysis, it was found that the pristine sample had a lower ID/IG ratio of 1.2 compared to the N2-plasma-treated sample of 1.7. This indicates that the N2 plasma treatment process served to increase the defects in
  • -plasma-treated sample has the highest graphitic content on the surface. This result contradicts the Raman spectroscopy result where the plasma-treated sample in fact showed more defects. It must be emphasized that in the present work no peak fitting was carried out on the C 1s peak to quantify the
PDF
Album
Full Research Paper
Published 13 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • transfer within the assembled structures. Acharya, Shrestha, and co-workers decorated one-dimensional C60 nanorods with zero-dimensional Ag nanoparticles that were used as substrates for surface-enhanced Raman scattering (SERS) to detect model targets such as rhodamine 6G with high sensitivity [246]. This
  • system provides dispersed SERS substrates that can be evaluated by confocal Raman imaging. The nanoarchitectonic materials work as freestanding efficient plasmonic substrates for molecular detection. Nanoporous bitter-melon-shaped C60 crystals with face-centred cubic lattice were fabricated through
PDF
Album
Review
Published 30 Jul 2019

Unipolar magnetic field pulses as an advantageous tool for ultrafast operations in superconducting Josephson “atoms”

  • Daria V. Popolitova,
  • Nikolay V. Klenov,
  • Igor I. Soloviev,
  • Sergey V. Bakurskiy and
  • Olga V. Tikhonova

Beilstein J. Nanotechnol. 2019, 10, 1548–1558, doi:10.3762/bjnano.10.152

Graphical Abstract
  • reversal in superconducting meta-atoms induced by picosecond unipolar pulses of a magnetic field is developed. A promising scheme based on the regime of stimulated Raman Λ-type transitions between qubit states via upper-lying levels is suggested in order to provide ultrafast quantum operations on the
  • equal to 1. In this paper we suggest a method for the ultrafast control of the population dynamics and population transfer between the qubit states in superconducting meta-atoms by unipolar pulses using the regime of stimulated Raman Λ-type transitions between them via upper-lying levels. The
  • results obtained for the scheme with blocked direct transitions between qubit states and demonstrate an ultrafast Raman Λ-type “Not”-operation stimulated by a unipolar magnetic pulse (first subsection). Further, we study the influence of additional upper-lying levels of the studied superconducting meta
PDF
Album
Full Research Paper
Published 29 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • were additionally characterized by Raman spectroscopy. In this way it is demonstrated that by varying the parameters during the electrodeposition and CVD steps, a tuning of the structural parameters of the hierarchical electrodes is possible. The suitability of the hierarchical electrodes for
  • electrocatalysts. The bottom-up synthesis of these nanocomposites was monitored using scanning electron microscopy (SEM) and Raman spectroscopy, and it is demonstrated that the hierarchical structures can be tuned with respect to thickness, length, and density of the CNTs. The activity of the Pt-CNT/CNT/GC
  • /GC) were characterized by Raman spectroscopy (Figure 5) after Fe removal in concentrated HNO3 (before Pt electrodeposition). Both electrodes show the typical D-band at ≈1355 cm−1 und the G-band at ≈1600 cm−1, which are associated with structural defects within the carbon lattice and crystalline
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

A silver-nanoparticle/cellulose-nanofiber composite as a highly effective substrate for surface-enhanced Raman spectroscopy

  • Yongxin Lu,
  • Yan Luo,
  • Zehao Lin and
  • Jianguo Huang

Beilstein J. Nanotechnol. 2019, 10, 1270–1279, doi:10.3762/bjnano.10.126

Graphical Abstract
  • Raman scattering (SERS) substrate was developed by facile deposition of silver nanoparticles onto cellulose fibers of ordinary laboratory filter paper. This was achieved by means of the silver mirror reaction in a manner to control both the size of the silver nanoparticles and the silver density of the
  • . This low-cost, highly sensitive, and biocompatible paper-based SERS substrate holds considerable potentials for the detection and analyses of chemical and biomolecular species. Keywords: cellulose nanofiber; composites; nanoarchitectonics; silver nanoparticle; surface-enhanced Raman spectroscopy
  • composed of silver nanoparticles anchored on cellulose nanofibers was fabricated, which is shown to be a highly effective substrate for surface-enhanced Raman spectroscopy (SERS). SERS, a powerful molecular spectroscopy method, is widely used in the trace detection and characterization of various chemical
PDF
Album
Supp Info
Full Research Paper
Published 24 Jun 2019

Alloyed Pt3M (M = Co, Ni) nanoparticles supported on S- and N-doped carbon nanotubes for the oxygen reduction reaction

  • Stéphane Louisia,
  • Yohann R. J. Thomas,
  • Pierre Lecante,
  • Marie Heitzmann,
  • M. Rosa Axet,
  • Pierre-André Jacques and
  • Philippe Serp

Beilstein J. Nanotechnol. 2019, 10, 1251–1269, doi:10.3762/bjnano.10.125

Graphical Abstract
  • characterization was performed using Raman spectroscopy and X-ray diffraction (XRD, see Table 1 and Supporting Information File 1, Figure S2 for Raman spectra). In Raman spectroscopy, a useful parameter for carbon nanotubes is the ratio between the D band (ID) at ≈1380 cm−1, attributed to the defects of the CNT
  • structure, and the G band (IG) at ≈1580 cm−1, the first-order Raman band of all sp2 carbon materials. The presence of disorder in CNTs can also impact: i) the intensity of other bands, such as the G’ band at ≈2700 cm−1, and ii) the position and shape of the peaks [40]. The G’ band is indicative of long
  • -range order in a sample. Finally, another parameter, measurable by Raman spectroscopy that is relevant to catalyst preparation, is the LD: LD is a typical inter-defect distance that we have measured as described in [41]. A lower ID/IG (and higher LD) is obtained for the CNT sample and a higher ID/IG
PDF
Album
Supp Info
Full Research Paper
Published 21 Jun 2019
Other Beilstein-Institut Open Science Activities