Search results

Search for "adhesion" in Full Text gives 432 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Structural optical and electrical properties of a transparent conductive ITO/Al–Ag/ITO multilayer contact

  • Aliyu Kabiru Isiyaku,
  • Ahmad Hadi Ali and
  • Nafarizal Nayan

Beilstein J. Nanotechnol. 2020, 11, 695–702, doi:10.3762/bjnano.11.57

Graphical Abstract
  • improve the transport from the lower to the upper part of the device [9]. The good adhesion, low resistivity, and the stability against oxidation and corrosion of Al films make them suitable for application in optical and electronic devices [18][19][20]. The low resistivity and relatively high
  • transmittance (compared to other metals) in the visible region of Ag thin films at room temperature led to the wide use of Ag layers in ITO multilayer contacts [21][22][23][24]. However, Ag thin films agglomerate upon annealing due to low adhesion, which degrades the quality of the films [25]. This issue can be
  • overcome by adding a thin layer of Al, Au, Pd, or Cr to the Ag film to improve the adhesion [4][25][26]. Optical and electrical properties of ITO films are enhanced by post-deposition annealing especially at high temperatures [7]. Gulen et al. [27] exposed pure ITO films deposited by sputtering to heat
PDF
Album
Full Research Paper
Published 27 Apr 2020

Preparation, characterization and photocatalytic performance of heterostructured CuO–ZnO-loaded composite nanofiber membranes

  • Wei Fang,
  • Liang Yu and
  • Lan Xu

Beilstein J. Nanotechnol. 2020, 11, 631–650, doi:10.3762/bjnano.11.50

Graphical Abstract
  • temperature reached 180 °C, the tensile strength of the CNFMs increased suddenly because of the increased adhesion between nanofibers resulting from the almost complete melting of PVDF. In addition, as the heat-treatment temperature increases, the ductility of PVDF increases, resulting in a higher elongation
PDF
Album
Full Research Paper
Published 15 Apr 2020

Identification of physicochemical properties that modulate nanoparticle aggregation in blood

  • Ludovica Soddu,
  • Duong N. Trinh,
  • Eimear Dunne,
  • Dermot Kenny,
  • Giorgia Bernardini,
  • Ida Kokalari,
  • Arianna Marucco,
  • Marco P. Monopoli and
  • Ivana Fenoglio

Beilstein J. Nanotechnol. 2020, 11, 550–567, doi:10.3762/bjnano.11.44

Graphical Abstract
  • purpose of investigating the role of surface curvature and chemistry on platelet aggregation, activation and adhesion. Substantial differences were found in the composition of the protein corona depending on the chemical nature of the nanoparticles, while the surface curvature was found to play a minor
  • surface (platelet translocation distance), the number of platelets that stably adhered to the VWF-coated surface (static platelets), and the percent surface coverage on the final frame (percentage of platelet surface coverage). For this study we only considered the platelet adhesion parameters. Results
  • . Platelet adhesion Activated platelets are physiologically programmed to adhere to the endothelial wall of damaged blood vessels. The VWF anchored to damaged endothelial cells plays a major role in this process, encouraging platelets to tether, roll and finally adhere at the site of damage. Dynamic platelet
PDF
Album
Supp Info
Full Research Paper
Published 03 Apr 2020

Multilayer capsules made of weak polyelectrolytes: a review on the preparation, functionalization and applications in drug delivery

  • Varsha Sharma and
  • Anandhakumar Sundaramurthy

Beilstein J. Nanotechnol. 2020, 11, 508–532, doi:10.3762/bjnano.11.41

Graphical Abstract
  • application in implants or tissue engineering. Another strategy for biomolecular functionalization is covalently linking the receptor specific ligands to one of the layer components that are known to interact with cancer cell receptors. For instance, the improved cell adhesion and proliferation was observed
PDF
Album
Review
Published 27 Mar 2020

Poly(1-vinylimidazole) polyplexes as novel therapeutic gene carriers for lung cancer therapy

  • Gayathri Kandasamy,
  • Elena N. Danilovtseva,
  • Vadim V. Annenkov and
  • Uma Maheswari Krishnan

Beilstein J. Nanotechnol. 2020, 11, 354–369, doi:10.3762/bjnano.11.26

Graphical Abstract
  • retard spheroid and stroma formation. VEGF signaling has been connected to an activation of focal adhesion kinases and paxillin leading to cell morphology changes promoting migration [30]. Therefore, the inhibition of VEGF leads to a reduction in the formation of cell–cell junctions that are a primer for
  • formation in the cells clearly indicating the effect of VEGF inhibition. Earlier studies have shown that VEGF binds to α9β1 integrin on the cell surface, which mediates the formation and migration of endothelial cells through Src and focal adhesion kinase [34]. Therefore, the silencing of VEGF retards tube
PDF
Album
Full Research Paper
Published 17 Feb 2020

Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine

  • Valentina Francia,
  • Daphne Montizaan and
  • Anna Salvati

Beilstein J. Nanotechnol. 2020, 11, 338–353, doi:10.3762/bjnano.11.25

Graphical Abstract
  • current understanding of the initial steps in the interactions of nano-sized materials with cells in relation to nanomedicine applications. In particular, we focus on the difficult interplay between the initial adhesion of nano-sized materials to the cell surface, the potential recognition by cell
  • description of the known endocytic pathways in cells. Review 1 Interactions of nano-sized materials at the cell surface and recognition by cell receptors 1.1 Active targeting The first steps in nanoparticle–cell interactions are those happening at the cell surface, including the adhesion of nanoparticles to
  • unspecific uptake), possibly triggered by the nano-sized object itself (Figure 2C). Another possibility is that the recognition by cell receptors is involved only in the initial adhesion to the cell membrane, but not in the internalization (Figure 2D). A combination of all these different possibilities may
PDF
Album
Review
Published 14 Feb 2020

Understanding nanoparticle flow with a new in vitro experimental and computational approach using hydrogel channels

  • Armel Boutchuen,
  • Dell Zimmerman,
  • Abdollah Arabshahi,
  • John Melnyczuk and
  • Soubantika Palchoudhury

Beilstein J. Nanotechnol. 2020, 11, 296–309, doi:10.3762/bjnano.11.22

Graphical Abstract
  • transvascular transport through vascular networks of varying dimensions within the body, before reaching the action site [7][8][9]. It is increasingly complex to predict the flow properties of NP-based drug delivery system such as the local velocity and adhesion of the NPs in vivo. If we can predict the flow
  • and interaction, e.g., adhesion or deposition, of the NPs through in vitro techniques, it will significantly enhance the preclinical to clinical translation of NP-based drugs from the current success rate of 8% [10]. Currently, preclinical assessment of NP drug delivery systems relies on animal models
  • equation for flow [30][31]. Fullstone et al. have used CFD in couple with flexible large-scale agent based modeling to predict NP distributions in vivo [32]. The size and shape of the NPs greatly influenced the adhesion and path of NPs within the vascular network. This CFD model predicted a higher
PDF
Album
Supp Info
Full Research Paper
Published 06 Feb 2020

Rational design of block copolymer self-assemblies in photodynamic therapy

  • Maxime Demazeau,
  • Laure Gibot,
  • Anne-Françoise Mingotaud,
  • Patricia Vicendo,
  • Clément Roux and
  • Barbara Lonetti

Beilstein J. Nanotechnol. 2020, 11, 180–212, doi:10.3762/bjnano.11.15

Graphical Abstract
  • proteins and adhesion to cells [108][109]. A hydrophobic cargo, well within the hydrophobic core is thus protected from hydrolysis and enzymatic degradation. Besides, PEO prevents the recognition from the mononuclear phagocyte system and preliminary clearance from the bloodstream is reduced. Although PEO
PDF
Album
Review
Published 15 Jan 2020

Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization

  • Tuba Evgin,
  • Alpaslan Turgut,
  • Georges Hamaoui,
  • Zdenko Spitalsky,
  • Nicolas Horny,
  • Matej Micusik,
  • Mihai Chirtoc,
  • Mehmet Sarikanat and
  • Maria Omastova

Beilstein J. Nanotechnol. 2020, 11, 167–179, doi:10.3762/bjnano.11.14

Graphical Abstract
  • HDPE/GnP nanocomposites. The Young’s moduli of the nanocomposites increased with increasing GnP loading, regardless of the GnP size. This may have been due to the extraordinary Young’s moduli of GnPs, their high aspect ratio, good dispersion, and good interfacial adhesion between GnPs and HDPE, which
PDF
Album
Supp Info
Full Research Paper
Published 14 Jan 2020

Nonclassical dynamic modeling of nano/microparticles during nanomanipulation processes

  • Moharam Habibnejad Korayem,
  • Ali Asghar Farid and
  • Rouzbeh Nouhi Hefzabad

Beilstein J. Nanotechnol. 2020, 11, 147–166, doi:10.3762/bjnano.11.13

Graphical Abstract
  • dynamics simulation and a multiscale approach, Korayem et al. investigated geometrical effects on the manipulation of carbon allotropes [24]. Ghattan Kashani et al. presented a new method to overcome the adhesion force between the tip and nanoparticle while releasing the nanoparticle. They created the
  • critical time and force of the dominant motion mode are used as the inputs of next steps. After applying the exerted force on the nanoparticle by AFM and distributed resistant force resulting from friction and adhesion, deflections of the cylindrical nanoparticle before the onset of motion in the dominant
  • the adhesion contact in particle and substrate contact area. After the initial contact between the tip and nanoparticle is made, the AFM cantilever begins to deform, and by substrate motion, the particle moves with the substrate (in stick mode). This results in the increase of applied force from the
PDF
Album
Full Research Paper
Published 13 Jan 2020

Recent progress in perovskite solar cells: the perovskite layer

  • Xianfeng Dai,
  • Ke Xu and
  • Fanan Wei

Beilstein J. Nanotechnol. 2020, 11, 51–60, doi:10.3762/bjnano.11.5

Graphical Abstract
  • improves the adhesion of the perovskite ink to hydrophobic substrates, effectively inhibiting the solution flow dynamics in the drying perovskite ink layer leading to compact and uniform perovskite films. The very small amount of surfactant additive has no adverse effect on the optoelectronic properties of
PDF
Album
Review
Published 06 Jan 2020

An investigation on the drag reduction performance of bioinspired pipeline surfaces with transverse microgrooves

  • Weili Liu,
  • Hongjian Ni,
  • Peng Wang and
  • Yi Zhou

Beilstein J. Nanotechnol. 2020, 11, 24–40, doi:10.3762/bjnano.11.3

Graphical Abstract
  • [7][8][9], the injection of gas to modify the turbulent boundary characteristics [10], and the fabrication of superhydrophobic surfaces to reduce the adhesion [11]. However, the application of polymer additives is not economic and the antidrag performance of additives is also instable under some
  • surface. In this case, the hydrophobicity of the pipeline surface was improved by the transverse microgrooves. The better the hydrophobicity of the surface was, the lower the adhesion of water was. Therefore, the increased contact angle of the bionic pipeline was beneficial for reducing the drag
  • transverse microgrooves, which could reduce the adhesion of water. In the present study, the proposition of applying bionic theory to the surface of a pipeline to reduce the drag was verified from a theoretical perspective under ideal conditions. The influence of microgrooves on the strength of the pipeline
PDF
Album
Full Research Paper
Published 03 Jan 2020

Fully amino acid-based hydrogel as potential scaffold for cell culturing and drug delivery

  • Dávid Juriga,
  • Evelin Sipos,
  • Orsolya Hegedűs,
  • Gábor Varga,
  • Miklós Zrínyi,
  • Krisztina S. Nagy and
  • Angéla Jedlovszky-Hajdú

Beilstein J. Nanotechnol. 2019, 10, 2579–2593, doi:10.3762/bjnano.10.249

Graphical Abstract
  • is that it can partially decrease the anionic character of aspartic acid. In addition, LYS also facilitates the electrostatic interaction between anionic plasma membrane sites and cationic polymer sites. Therefore, it supports cell adhesion and proliferation [47]. The swelling, mechanical and
  • viability of the growth of PDLCs on the different hydrogels was tested (Figure 6a). After one day of cell growth, the highest cell viability index (referring to the highest cell adhesion) was measured on the 100CYS-LYS gel, which does not contain any LYS at all, only the redox sensitive cross-linker CYS. On
  • hydrogel. The presence of thiol groups supports cell adhesion and proliferation as we showed previously. Therefore, the higher the density of CYS in the polymer matrix, the higher is the viability of the cells [25]. In the literature, several articles can be found about the effect of poly-ʟ-lysine on cell
PDF
Album
Supp Info
Full Research Paper
Published 27 Dec 2019

Abrupt elastic-to-plastic transition in pentagonal nanowires under bending

  • Sergei Vlassov,
  • Magnus Mets,
  • Boris Polyakov,
  • Jianjun Bian,
  • Leonid Dorogin and
  • Vahur Zadin

Beilstein J. Nanotechnol. 2019, 10, 2468–2476, doi:10.3762/bjnano.10.237

Graphical Abstract
  • by Russian Science Foundation project grant 18-19-00645 “Adhesion of polymer-based soft materials: from liquid to solid”; mechanical testing and FEM simulations were supported by Estonian Research Council projects PUT1689 and PUT1372.
PDF
Album
Supp Info
Full Research Paper
Published 12 Dec 2019

Mobility of charge carriers in self-assembled monolayers

  • Zhihua Fu,
  • Tatjana Ladnorg,
  • Hartmut Gliemann,
  • Alexander Welle,
  • Asif Bashir,
  • Michael Rohwerder,
  • Qiang Zhang,
  • Björn Schüpbach,
  • Andreas Terfort and
  • Christof Wöll

Beilstein J. Nanotechnol. 2019, 10, 2449–2458, doi:10.3762/bjnano.10.235

Graphical Abstract
  • adhesion layer. The thickness and deposition rate (10 Å s−1) were monitored using a quartz crystal microbalance. Between substrate preparation and SAM formation, the substrates were stored in an argon atmosphere. The formation of the PAT monolayers on the gold silicon wafer was described above. Grafting
PDF
Album
Supp Info
Full Research Paper
Published 11 Dec 2019

Atomic force acoustic microscopy reveals the influence of substrate stiffness and topography on cell behavior

  • Yan Liu,
  • Li Li,
  • Xing Chen,
  • Ying Wang,
  • Meng-Nan Liu,
  • Jin Yan,
  • Liang Cao,
  • Lu Wang and
  • Zuo-Bin Wang

Beilstein J. Nanotechnol. 2019, 10, 2329–2337, doi:10.3762/bjnano.10.223

Graphical Abstract
  • and Figure 3n, we infer that both the elongation and the area spread of the L929 cells on the undeveloped SU-8 films remain statistically unchanged in the stiffness range investigated. These results suggest that modulating the EBL exposure doses does not significantly influence the adhesion and the
  • roughness of substrates would affect the adhesion and the morphology of cells [43]. To assess how the stiffness and the topography differ in influencing the cells, the alignment rates and the elongation factors of the L929 cells cultured on the three substrates have been determined as shown in Figure 6. The
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2019

Design of a nanostructured mucoadhesive system containing curcumin for buccal application: from physicochemical to biological aspects

  • Sabrina Barbosa de Souza Ferreira,
  • Gustavo Braga,
  • Évelin Lemos Oliveira,
  • Jéssica Bassi da Silva,
  • Hélen Cássia Rosseto,
  • Lidiane Vizioli de Castro Hoshino,
  • Mauro Luciano Baesso,
  • Wilker Caetano,
  • Craig Murdoch,
  • Helen Elizabeth Colley and
  • Marcos Luciano Bruschi

Beilstein J. Nanotechnol. 2019, 10, 2304–2328, doi:10.3762/bjnano.10.222

Graphical Abstract
  • , considered as the required work necessary to overcome the attraction forces between the sample surface and the polycarbonate probe surface, is a desirable parameter for mucoadhesive preparations aimed at buccal applications. In this sense, a higher adhesion could implicate higher retention, and consequently
  • previously observed in the flow rheology with higher consistency index numbers. These higher values are desirable for a higher adhesion to the buccal cavity, leading to longer contact time. These results confirm that the system is mucoadhesive but also warrant further mucoadhesion investigations [11][59][71
  • , it is possible to obtain a graph with the force required to separate two surfaces with time and the maximum required force to separate the formulation from the mucin disc (mucoadhesive force). In addition, the adhesion work values were calculated. The incorporation of CUR in mucoadhesive
PDF
Album
Supp Info
Full Research Paper
Published 25 Nov 2019

Mannosylated brush copolymers based on poly(ethylene glycol) and poly(ε-caprolactone) as multivalent lectin-binding nanomaterials

  • Stefania Ordanini,
  • Wanda Celentano,
  • Anna Bernardi and
  • Francesco Cellesi

Beilstein J. Nanotechnol. 2019, 10, 2192–2206, doi:10.3762/bjnano.10.212

Graphical Abstract
  • : atom transfer radical polymerization (ATRP); glycopolymer; lectin; poly(ethylene glycol); poly(ε-caprolactone); ring-opening polymerization (ROP); Introduction Carbohydrate–protein interactions are involved in many biological processes, including cell recognition and cell–cell adhesion. These
PDF
Album
Supp Info
Full Research Paper
Published 07 Nov 2019

BergaCare SmartLipids: commercial lipophilic active concentrates for improved performance of dermal products

  • Florence Olechowski,
  • Rainer H. Müller and
  • Sung Min Pyo

Beilstein J. Nanotechnol. 2019, 10, 2152–2162, doi:10.3762/bjnano.10.208

Graphical Abstract
  • Adhesion onto skin with increased residence time/prolonged release There are many properties that are identical for the several types of lipid nanoparticles – SLNs, NLCs and SmartLipids – because they only depend on physical characteristics (e.g., particle size or general adhesiveness of small particles
PDF
Album
Review
Published 04 Nov 2019

The importance of design in nanoarchitectonics: multifractality in MACE silicon nanowires

  • Stefania Carapezzi and
  • Anna Cavallini

Beilstein J. Nanotechnol. 2019, 10, 2094–2102, doi:10.3762/bjnano.10.204

Graphical Abstract
  • adhesion force between the surfaces of the two NWs is larger than the elastic force. In order to theoretically confirm the self-assembly that occurred in both samples SiNW1 and SiNW2, we availed of literature [29][31] to model steps 1) and 2). Given a pillar-like structure of height h, clamped at one end
PDF
Album
Full Research Paper
Published 31 Oct 2019

Nanoarchitectonics meets cell surface engineering: shape recognition of human cells by halloysite-doped silica cell imprints

  • Elvira Rozhina,
  • Ilnur Ishmukhametov,
  • Svetlana Batasheva,
  • Farida Akhatova and
  • Rawil Fakhrullin

Beilstein J. Nanotechnol. 2019, 10, 1818–1825, doi:10.3762/bjnano.10.176

Graphical Abstract
  • cells and (G) HeLa cells coated with halloysite-doped silica shells. Atomic force microscopy (PeakForce Tapping mode) images of inorganic silica/halloysite imprints templated on HeLa cells: (A) topography image, (B) non-specific adhesion map; (C) scanning electron microscopy image of inorganic silica
PDF
Album
Letter
Published 04 Sep 2019

TiO2/GO-coated functional separator to suppress polysulfide migration in lithium–sulfur batteries

  • Ning Liu,
  • Lu Wang,
  • Taizhe Tan,
  • Yan Zhao and
  • Yongguang Zhang

Beilstein J. Nanotechnol. 2019, 10, 1726–1736, doi:10.3762/bjnano.10.168

Graphical Abstract
  • . The excellent adhesion between TiO2 nanoparticles and GO sheets resulted in enhanced conductivity, which is highly desirable for an efficient electron transfer process. The Li/S battery with a TiO2/GO-coated separator exhibited a high initial discharge capacity of 1102.8 mAh g−1 and a 100th cycle
  • and GO sheets exhibit excellent adhesion, which ensures efficient electron transfer from the GO sheet to nanoporous TiO2. The use of TiO2/GO composites as an interlayer can greatly suppress the migration of polysulfides due to their physical and chemical interactions with dissolved polysulfides
  • μm (Figure 4c). Furthermore, the interface does not contain any cracks, suggesting the excellent adhesion of the TiO2/GO composite layer with a pristine separator. Figure 5 compares the cycle voltammetry (CV) curves of the Li/S batteries with pristine, GO-coated and TiO2/GO-coated separators at a
PDF
Album
Full Research Paper
Published 19 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
PDF
Album
Review
Published 30 Jul 2019

Development of a new hybrid approach combining AFM and SEM for the nanoparticle dimensional metrology

  • Loïc Crouzier,
  • Alexandra Delvallée,
  • Sébastien Ducourtieux,
  • Laurent Devoille,
  • Guillaume Noircler,
  • Christian Ulysse,
  • Olivier Taché,
  • Elodie Barruet,
  • Christophe Tromas and
  • Nicolas Feltin

Beilstein J. Nanotechnol. 2019, 10, 1523–1536, doi:10.3762/bjnano.10.150

Graphical Abstract
  • substrate under ambient conditions, since the area/volume ratio becomes important, capillary adhesion forces must be taken into account. Deformations of the silica NP and substrate can be assessed using the model developed by Derjaguin, Muller and Toporov (DMT) [33]. This model describes the elastic
  • deformation of spherical bodies by including adhesion forces to the Hertz contact equation. This interaction can be described by the Bradley theory [34]: with P the adhesion force and Δγ = γ1 + γ2 − γ12 the work of adhesion with γ1 and γ2, the surface energies of NP and substrate, respectively, and γ12 the
  • : Finally, the theoretical deformation of the system is equal to 0.6 ± 0.2 nm for a 30 nm nominal diameter silica NP, 0.8 ± 0.3 nm for a 100 nm silica NP. Consequently, the 3.5 nm discrepancy between AFM and SEM measurements for FD304 particles cannot be fully explained by NP deformation due to adhesion
PDF
Album
Full Research Paper
Published 26 Jul 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • low deposition rate and adjustment of the magnetron power for current intensities as small as possible. As a result of RTA processing, layers with strong adhesion to the substrate are achieved (see Figure 1b,d,f). At a specific temperature applied to the deposited samples, the elimination of gaseous
  • crystallinity by increasing the crystallite size (from 12.7 nm to 34.3 nm). Also, it was found from SEM investigations (cross-sections) that films subjected to such a thermal treatment show good adhesion to the substrate. Based on XPS investigations, it was evidenced that stoichiometric thin films were obtained
PDF
Album
Full Research Paper
Published 25 Jul 2019
Other Beilstein-Institut Open Science Activities