Search results

Search for "amorphous" in Full Text gives 478 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • the electrical conductivity, leading to performance loss. Furthermore, it has been proposed by Schweiss et al. that an increase in the amorphous content in the felt can increase the hydrogen evolution reaction [12]. In one way or the other, functionalization with heteroatoms will always reduce the
PDF
Album
Full Research Paper
Published 13 Aug 2019

Nanoporous smartPearls for dermal application – Identification of optimal silica types and a scalable production process as prerequisites for marketed products

  • David Hespeler,
  • Sanaa El Nomeiri,
  • Jonas Kaltenbach and
  • Rainer H. Müller

Beilstein J. Nanotechnol. 2019, 10, 1666–1678, doi:10.3762/bjnano.10.162

Graphical Abstract
  • particles loaded with a long-term stable, amorphous active agent in its mesopores (2–50 nm). The amorphous state of the active agent is known to increase dermal bioavailability. For use in marketed products, optimal silica types were identified from commercially available, regulatory accepted silica. In
  • staying amorphous was achieved between 10% and 25% (w/w), depending on the silica type. A loading mechanism was also proposed. The most suitable processing occurred with the large-sized Syloid® XDP 3050 silica with a 50 µm particle size and a pore diameter of 25 nm, resulting in 18% (w/w) maximum loading
  • . Based on a 10% (w/w) loading and the amorphous solubility of the active agent, for a 100 kg dermal formulation, about 500 g of loaded particles were required. This corresponds to production of 5 kg of loaded smartPearls for a formulation batch size of a ton. The production of 5 kg (i.e., about 25 L of
PDF
Album
Full Research Paper
Published 08 Aug 2019

Materials nanoarchitectonics at two-dimensional liquid interfaces

  • Katsuhiko Ariga,
  • Michio Matsumoto,
  • Taizo Mori and
  • Lok Kumar Shrestha

Beilstein J. Nanotechnol. 2019, 10, 1559–1587, doi:10.3762/bjnano.10.153

Graphical Abstract
  • -dimensional amorphous carbon microbelts at 900 °C and their dense graphitic versions at 2000 °C. Especially the former carbon material exhibited excellent electrochemical supercapacitive performance due to the enhanced surface area and the robust mesoporous framework motifs. The hierarchical bimodal pore
PDF
Album
Review
Published 30 Jul 2019

High-temperature resistive gas sensors based on ZnO/SiC nanocomposites

  • Vadim B. Platonov,
  • Marina N. Rumyantseva,
  • Alexander S. Frolov,
  • Alexey D. Yapryntsev and
  • Alexander M. Gaskov

Beilstein J. Nanotechnol. 2019, 10, 1537–1547, doi:10.3762/bjnano.10.151

Graphical Abstract
  • −1 and 1067 cm−1, corresponding to the stretching vibrations of the Si–C and Si–O bonds, respectively [23]. This indicates the formation of an amorphous SiO2 shell on the surface of SiC nanoparticles, which does not appear on the diffraction patterns of the samples. In addition to these absorption
  • the O 1s spectrum is consistent with the results from IR spectroscopy. The carbon in silicon carbide is also found to be oxidized. The spectrum of the C 1s region contains four components at 283.1 (C1), 285.1 (C2), 286.5 (C3), 289.3 and (C4) eV, which correspond to carbide in SiC, amorphous carbon, C
  • annealed stepwise in an argon atmosphere at 220 °C (2 h, heating rate 1 K/min), 600 °C (2 h, heating rate 1 K/min), and finally at 1150 °C (6 h, heating rate 2 K/min). The obtained amorphous SiC was additionally annealed using the spark plasma sintering (SPS) method on a Spark plasma sintering system
PDF
Album
Supp Info
Full Research Paper
Published 26 Jul 2019

Rapid thermal annealing for high-quality ITO thin films deposited by radio-frequency magnetron sputtering

  • Petronela Prepelita,
  • Ionel Stavarache,
  • Doina Craciun,
  • Florin Garoi,
  • Catalin Negrila,
  • Beatrice Gabriela Sbarcea and
  • Valentin Craciun

Beilstein J. Nanotechnol. 2019, 10, 1511–1522, doi:10.3762/bjnano.10.149

Graphical Abstract
  • composition values of the component elements were determined from the XPS spectra using the Avantage software (version 5.978). The crystalline structure of the ITO thin films on amorphous quartz substrates was investigated by grazing incidence X-ray diffraction (XRD, Bruker AXS D8 Discover diffractometer
PDF
Album
Full Research Paper
Published 25 Jul 2019

Flexible freestanding MoS2-based composite paper for energy conversion and storage

  • Florian Zoller,
  • Jan Luxa,
  • Thomas Bein,
  • Dina Fattakhova-Rohlfing,
  • Daniel Bouša and
  • Zdeněk Sofer

Beilstein J. Nanotechnol. 2019, 10, 1488–1496, doi:10.3762/bjnano.10.147

Graphical Abstract
  • as amorphous carbon [8], carbon nanofibers [7], carbon nanotubes [8] and graphene [9]) has already been demonstrated to be quite attractive. Typically, the electrodes are prepared by mixing these composites as active material with a polymeric binder, conductive carbon and an organic solvent to form a
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • H2/Ar ratio higher than 1.2 L h−1/0.5 L h−1 (and thus a higher H2/cyclohexane ratio, Supporting Information File 1, Figure S2f), while Figure S2e shows only few CNTs and large amounts of surrounding (probably amorphous) carbon obtained with a smaller H2/Ar ratio (1.0 L h−1/0.7 L h−1). It was reported
  • metal catalyst in its active state and avoid catalyst passivation by excess carbon deposition, which would otherwise suppress CNT growth. We assume that with the decreasing ratio of H2/cyclohexane, exactly these processes occur, resulting in suppressed CNT growth and formation of amorphous carbon. In
  • flow rate of 1.7 L h−1 yielded unsatisfactory results. As exposed in Supporting Information File 1, Figure S4, larger amounts of amorphous carbon are deposited and only few CNTs are grown, indicating the dependence of CNT growth on support and structure. Learning from the results on the growth of
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Growth of lithium hydride thin films from solutions: Towards solution atomic layer deposition of lithiated films

  • Ivan Kundrata,
  • Karol Fröhlich,
  • Lubomír Vančo,
  • Matej Mičušík and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 1443–1451, doi:10.3762/bjnano.10.142

Graphical Abstract
  • combination with lithium hexamethyldisilazane to deposit LIPON films [9]. The key insight was the use of a nitrogen-containing phosphorus precursor to directly create the P–N bonds. The resulting films grown by this technique at 270–330 °C were amorphous and the nitrogen concentration increased with the
PDF
Album
Full Research Paper
Published 18 Jul 2019

Direct observation of oxygen-vacancy formation and structural changes in Bi2WO6 nanoflakes induced by electron irradiation

  • Hong-long Shi,
  • Bin Zou,
  • Zi-an Li,
  • Min-ting Luo and
  • Wen-zhong Wang

Beilstein J. Nanotechnol. 2019, 10, 1434–1442, doi:10.3762/bjnano.10.141

Graphical Abstract
  • be a fundamental step for controllable engineering of defects. Electron-beam irradiation is a powerful technique to fabricate or modify materials at the nanoscale [21][22]. For example, electron irradiation can induce a phase transformation from crystalline to amorphous or vice versa [23][24]; the
  • amorphous layer. These observed features on the Bi2WO6 flake indicate that bonds were broken in the nanoflake, and atoms were expelled towards the surface of the irradiated flake by the released gas and/or the electron-beam-induced electric field [28][29]. The bubbles appeared to be mobile, and the bubbles
  • which the diffraction spots of Bi2WO6 gradually disappeared, and spots emerge at the extinction positions. Eventually, the precipitates grew up to 10–20 nm in size while the degraded amorphous layers become thinner and more uniform. Structural analysis by in situ SAED and HRTEM The above HRTEM
PDF
Album
Supp Info
Full Research Paper
Published 18 Jul 2019

BiOCl/TiO2/diatomite composites with enhanced visible-light photocatalytic activity for the degradation of rhodamine B

  • Minlin Ao,
  • Kun Liu,
  • Xuekun Tang,
  • Zishun Li,
  • Qian Peng and
  • Jing Huang

Beilstein J. Nanotechnol. 2019, 10, 1412–1422, doi:10.3762/bjnano.10.139

Graphical Abstract
  • agreement with the standard XRD data of JCPDS No.06-0249. In the pattern of TiO2/diatomite, an inconspicuous broad peak ranging from 15 to 25° shows the amorphous nature of diatomite, and other obvious peaks at 25.3°, 37.8°, 48°, 53.9° and 55.1° coincide well with anatase TiO2 (JCPDS No.21-1272). The
PDF
Album
Supp Info
Full Research Paper
Published 16 Jul 2019

Warped graphitic layers generated by oxidation of fullerene extraction residue and its oxygen reduction catalytic activity

  • Machiko Takigami,
  • Rieko Kobayashi,
  • Takafumi Ishii,
  • Yasuo Imashiro and
  • Jun-ichi Ozaki

Beilstein J. Nanotechnol. 2019, 10, 1391–1400, doi:10.3762/bjnano.10.137

Graphical Abstract
  • study employed a fullerene extraction residue as a starting material to construct WGLs. The oxidation of the material at 600 °C exposed the WGLs by removing the surrounding amorphous moieties. Transmission electron microscopy (TEM) observations revealed the formation of WGLs by oxidation treatment at
  • combustion method produces a large amount of fullerenes by partial thermal oxidation of hydrocarbons. The residue is essentially amorphous but should include WGLs containing a non-benzenoid structure due to some incomplete formation of fullerenes [41][42]. Our previous study on extracting nanoshell
  • rate of 1 mV/s and a rotating speed of 1500 rpm. Results Carbon structure Figure 1 shows selected TEM images of the prepared carbons. NB-ORG did not show a stacking structure, even at higher magnification, but it did show dot-like structures. These results indicate the amorphous nature of this carbon
PDF
Album
Full Research Paper
Published 12 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • forms of amorphous carbon are formed during material calcination. Figure 6 represents core Sn 3d5/2 (left) and O 1s (right) lines of the samples. The binding energy for the 3d5/2 tin and oxygen 1s lines in the SnO2 reference occurred at 487.1 eV and 531.1 eV, respectively. In the powder sample (SnO2 pwd
PDF
Album
Full Research Paper
Published 08 Jul 2019

Fabrication of phase masks from amorphous carbon thin films for electron-beam shaping

  • Lukas Grünewald,
  • Dagmar Gerthsen and
  • Simon Hettler

Beilstein J. Nanotechnol. 2019, 10, 1290–1302, doi:10.3762/bjnano.10.128

Graphical Abstract
  • (transmission) electron microscopy (S(T)EM). Phase-modulating thin-film devices (phase masks) made of amorphous silicon nitride are commonly used to generate a wide range of different beam shapes. An additional conductive layer on such a device is required to avoid charging under electron-beam irradiation
  • , which induces unwanted scattering events. Results: Phase masks of conductive amorphous carbon (aC) were successfully fabricated with optical lithography and focused ion beam milling. Analysis by TEM shows the successful generation of Bessel and vortex beams. No charging or degradation of the aC phase
  • masks was observed. Conclusion: Amorphous carbon can be used as an alternative to silicon nitride for phase masks at the expense of a more complex fabrication process. The quality of arbitrary beam shapes could benefit from the application of phase masks made of amorphous C. Keywords: amorphous carbon
PDF
Album
Supp Info
Full Research Paper
Published 25 Jun 2019

Playing with covalent triazine framework tiles for improved CO2 adsorption properties and catalytic performance

  • Giulia Tuci,
  • Andree Iemhoff,
  • Housseinou Ba,
  • Lapo Luconi,
  • Andrea Rossin,
  • Vasiliki Papaefthimiou,
  • Regina Palkovits,
  • Jens Artz,
  • Cuong Pham-Huu and
  • Giuliano Giambastiani

Beilstein J. Nanotechnol. 2019, 10, 1217–1227, doi:10.3762/bjnano.10.121

Graphical Abstract
  • used in large excess with respect to the monomer (ZnCl2/monomer = 5:1 molar ratio). After a sequential heating of the monomer/salt mixture at 400 °C and 600 °C for 10 + 10 h in sealed quartz ampules, CTFs have been isolated as amorphous and partially carbonized frameworks. The as-prepared samples
  • feature high specific surface areas showing variable N loadings and N configurations as a function of the type of monomer(s) used. X-ray powder diffraction analyses have confirmed, as expected, the substantially amorphous nature [19][33] of all CTF samples from this series (Supporting Information File 1
  • mixtures of 4,5-dicyanoimidazole (DCI, III) and 1,4-dicyanobenzene (p-DCB, I) or 4,4′-dicyanobiphenyl (DCBP, II), has provided amorphous polymers with variable (from moderate to high) specific surface areas and bimodal micro-mesoporous morphologies. In particular, the greater the size of the para-dicyano
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2019

Porous N- and S-doped carbon–carbon composite electrodes by soft-templating for redox flow batteries

  • Maike Schnucklake,
  • László Eifert,
  • Jonathan Schneider,
  • Roswitha Zeis and
  • Christina Roth

Beilstein J. Nanotechnol. 2019, 10, 1131–1139, doi:10.3762/bjnano.10.113

Graphical Abstract
  • to serve as electrodes in the VRFB, since they combine the desired properties of the two components, namely good electron conductivity and high surface area. The carbon fibers as supporting material possess a high electron conductivity, while the amorphous carbon coating provides the catalytic
PDF
Album
Full Research Paper
Published 28 May 2019

Quantitative analysis of annealing-induced instabilities of photo-leakage current and negative-bias-illumination-stress in a-InGaZnO thin-film transistors

  • Dapeng Wang and
  • Mamoru Furuta

Beilstein J. Nanotechnol. 2019, 10, 1125–1130, doi:10.3762/bjnano.10.112

Graphical Abstract
  • temperature on the initial electrical characteristics and photo-induced instabilities of amorphous indium gallium zinc oxide (a-IGZO) thin-film transistors (TFTs). The extracted electrical parameters from transfer curves suggest that a low-temperature treatment maintains a high density of defects in the IGZO
  • -panel displays (FPDs). Amorphous InGaZnO (a-IGZO), an outstanding active channel material, is generally adopted in TFTs because of its high electron mobility, great environmental/thermal stability, and preparation versatility. The enhanced mobility of a-IGZO originates from the fact that the electrical
PDF
Album
Full Research Paper
Published 27 May 2019

CuInSe2 quantum dots grown by molecular beam epitaxy on amorphous SiO2 surfaces

  • Henrique Limborço,
  • Pedro M.P. Salomé,
  • Rodrigo Ribeiro-Andrade,
  • Jennifer P. Teixeira,
  • Nicoleta Nicoara,
  • Kamal Abderrafi,
  • Joaquim P. Leitão,
  • Juan C. Gonzalez and
  • Sascha Sadewasser

Beilstein J. Nanotechnol. 2019, 10, 1103–1111, doi:10.3762/bjnano.10.110

Graphical Abstract
  • , we report CuInSe2 nanodots grown through a vacuum-compatible co-evaporation growth process on an amorphous surface. The density, mean size, and peak optical emission energy of the nanodots can be controlled by changing the growth temperature. Scanning transmission electron microscopy measurements
  • materials [31]. The motivation behind the present work is to grow CIS nanodots on substrates covered with an amorphous layer using co-evaporation. The vacuum conditions of the co-evaporation process will allow for the CIS to keep adequate optoelectronic properties, as demonstrated by the photoluminescence
  • analysis. The use of a substrate with an amorphous surface, together with the use of an industrial standard growth technique, namely co-evaporation, opens the door to use the nanodots in advanced solar-cell architectures and a potential large-area industrialization of this process. Experimental Sample
PDF
Album
Full Research Paper
Published 22 May 2019

Concurrent nanoscale surface etching and SnO2 loading of carbon fibers for vanadium ion redox enhancement

  • Jun Maruyama,
  • Shohei Maruyama,
  • Tomoko Fukuhara,
  • Toru Nagaoka and
  • Kei Hanafusa

Beilstein J. Nanotechnol. 2019, 10, 985–992, doi:10.3762/bjnano.10.99

Graphical Abstract
  • spectroscopy. Figure 2 shows the Raman spectra of TGP and the treated samples. After the coating of TGP with CSnPc, the Am and D2 peaks appeared in addition to the G and D peaks. The peaks are ascribed to amorphous carbon, the surface graphene layers as a disordered graphitic lattice, the ideal graphitic
  • lattice, and the graphene layer edges also as the disordered graphitic lattice, respectively [21][22]. The presence of the Am peak indicates that CSnPc is amorphous. The Am peak is decreased (Table 2) and the D peak is increased in the spectrum for TGP-CSnPc-550Air. The ratios between the intensities of
  • the D peak and the G peak (ID/IG) increased from 0.255 (TGP) to 0.382 (TGP-CSnPc-550Air), suggesting the exposure of the edge planes on the carbon fiber surface and also a slight retention of the amorphous carbon [23]. This assumption is based on the general recognition that the ratio is related to
PDF
Album
Supp Info
Full Research Paper
Published 30 Apr 2019

Nanoscale optical and structural characterisation of silk

  • Meguya Ryu,
  • Reo Honda,
  • Adrian Cernescu,
  • Arturas Vailionis,
  • Armandas Balčytis,
  • Jitraporn Vongsvivut,
  • Jing-Liang Li,
  • Denver P. Linklater,
  • Elena P. Ivanova,
  • Vygantas Mizeikis,
  • Mark J. Tobin,
  • Junko Morikawa and
  • Saulius Juodkazis

Beilstein J. Nanotechnol. 2019, 10, 922–929, doi:10.3762/bjnano.10.93

Graphical Abstract
  • wavelength and 22.8 °C. (a) Far-field optical image of longitudinal slices of white silk embedded in an epoxy sheet. The inset shows schematics of a lateral silk slice composed of β-sheets interconnected with α-coils and amorphous segments. (b) Optical and topographic images of the silk slice shown in (a
PDF
Album
Full Research Paper
Published 23 Apr 2019

Co-doped MnFe2O4 nanoparticles: magnetic anisotropy and interparticle interactions

  • Bagher Aslibeiki,
  • Parviz Kameli,
  • Hadi Salamati,
  • Giorgio Concas,
  • Maria Salvador Fernandez,
  • Alessandro Talone,
  • Giuseppe Muscas and
  • Davide Peddis

Beilstein J. Nanotechnol. 2019, 10, 856–865, doi:10.3762/bjnano.10.86

Graphical Abstract
  • %), cobalt nitrate (Co(NO3)2·6H2O, Merck, 98.5%) and citric acid (C6H6O7, Merck, 99.5%) powders were mixed in a 1:1 molar ratio of total metal nitrates to citric acid. The powders were milled for 1 h in a planetary ball mill using agate balls, producing an amorphous precursor (Supporting Information File 1
  • . Uncertainties in the last digit are given in parentheses. Supporting Information An example of a typical X-ray diffraction pattern of the amorphous phase obtained immediately after the milling process for sample C0 (Figure S1). ZFC and FC curves measured for all samples are shown in Figure S2. For sample C0
PDF
Album
Supp Info
Full Research Paper
Published 12 Apr 2019

Synthesis of MnO2–CuO–Fe2O3/CNTs catalysts: low-temperature SCR activity and formation mechanism

  • Yanbing Zhang,
  • Lihua Liu,
  • Yingzan Chen,
  • Xianglong Cheng,
  • Chengjian Song,
  • Mingjie Ding and
  • Haipeng Zhao

Beilstein J. Nanotechnol. 2019, 10, 848–855, doi:10.3762/bjnano.10.85

Graphical Abstract
  • conversions of 4% MnO2–CuO–Fe2O3/CNTs catalyst of 43.1–87.9% at 80–180 °C were achieved, which was ascribed to the generation of amorphous MnO2, CuO and Fe2O3, and a high surface-oxygen (Os) content. Keywords: amorphous materials; carbon nanotubes; low-dimensional materials; low-temperature catalysis; SCR
  • , only a weak peak of MnO2 (PDF#53-0633) can be observed when the loading was greater than or equal to 4%, whereas no diffraction peaks of metal oxides could be found, suggesting the formation of amorphous metal oxide phases. Amorphous catalytic materials are conducive to SCR activity [19], which is also
  • , also verifying the generation of metal oxide catalysts on the CNT surface. The EDX spectrum (Figure 3d) shows signals of Mn, Cu, Fe, O and C. Clear lattice fringes of the metal oxides cannot be observed in the HRTEM images, indicating the generation of amorphous materials, which is consistent with the
PDF
Album
Supp Info
Full Research Paper
Published 11 Apr 2019

Tungsten disulfide-based nanocomposites for photothermal therapy

  • Tzuriel Levin,
  • Hagit Sade,
  • Rina Ben-Shabbat Binyamini,
  • Maayan Pour,
  • Iftach Nachman and
  • Jean-Paul Lellouche

Beilstein J. Nanotechnol. 2019, 10, 811–822, doi:10.3762/bjnano.10.81

Graphical Abstract
  • WS2-NT-CM-PEI (Figure 2h) shows that the wavy-looking matrix surrounding the crystalline maghemite is amorphous. Table 1 shows the results of ICP analysis of CAN-mag nanoparticles and WS2-NT-CM composite. The ratios between iron and cerium are very close when comparing the nanoparticles and the
PDF
Album
Supp Info
Full Research Paper
Published 02 Apr 2019

An efficient electrode material for high performance solid-state hybrid supercapacitors based on a Cu/CuO/porous carbon nanofiber/TiO2 hybrid composite

  • Mamta Sham Lal,
  • Thirugnanam Lavanya and
  • Sundara Ramaprabhu

Beilstein J. Nanotechnol. 2019, 10, 781–793, doi:10.3762/bjnano.10.78

Graphical Abstract
  • composites in the range of 1000–2000 cm−1. The amorphous degree of the sample was calculated from the relative intensity ratio of the D- and G-bands (ID/IG) as 2.38, 2.93, 3.16 and 3.35 for CNF, PCNF, Cu/PCNF and Cu/CuO/PCNF/TiO2, respectively. The morphology and microstructure of the as-prepared CNF, PCNF
PDF
Album
Supp Info
Full Research Paper
Published 01 Apr 2019

Renewable energy conversion using nano- and microstructured materials

  • Harry Mönig and
  • Martina Schmid

Beilstein J. Nanotechnol. 2019, 10, 771–773, doi:10.3762/bjnano.10.76

Graphical Abstract
  • in nanoporous cobalt oxide photocathodes [7], and an approach in which silicon nanoparticles are embedded in an amorphous carbon matrix [8]. In terms of material saving, nano- and microstructured absorbers offer great potential, e.g., via ultrathin absorbers as highlighted for Sb2S3 hybrid solar
PDF
Editorial
Published 26 Mar 2019

On the transformation of “zincone”-like into porous ZnO thin films from sub-saturated plasma enhanced atomic layer deposition

  • Alberto Perrotta,
  • Julian Pilz,
  • Stefan Pachmajer,
  • Antonella Milella and
  • Anna Maria Coclite

Beilstein J. Nanotechnol. 2019, 10, 746–759, doi:10.3762/bjnano.10.74

Graphical Abstract
  • an inhibition of the crystal formation in the resulting TiO2 layers, and the authors attributed this to the amorphous titania being constrained in the organic matrix. As a consequence, an investigation of the crystallinity of Zn-alkoxide layers would shed a light on the evolution of the ZnO crystals
  • ]. From this, a control from amorphous zinc alkoxide (1 s plasma exposure) to crystalline ZnO (4 s plasma exposure) with a preferred (100) orientation as a function of plasma time can be concluded. During the calcination of samples deposited at 1 s plasma exposure time, ZnO peaks become visible starting
  • plasma exposure time and 4 s plasma exposure time are reported in Figure 5a, Figure 5d and Figure 5g, respectively. For the sample deposited with 1 s plasma exposure time (Figure 5a), no diffraction signal was measured, indicating an amorphous material. In the sample deposited with 2 s plasma exposure
PDF
Album
Supp Info
Full Research Paper
Published 21 Mar 2019
Other Beilstein-Institut Open Science Activities