Search results

Search for "atomic force microscope" in Full Text gives 187 result(s) in Beilstein Journal of Nanotechnology.

Stick–slip behaviour on Au(111) with adsorption of copper and sulfate

  • Nikolay Podgaynyy,
  • Sabine Wezisla,
  • Christoph Molls,
  • Shahid Iqbal and
  • Helmut Baltruschat

Beilstein J. Nanotechnol. 2015, 6, 820–830, doi:10.3762/bjnano.6.85

Graphical Abstract
  • ; Introduction Atomic-scale friction processes constitute a fascinating field of research which has been opened by the invention of the atomic force microscope (AFM) [1]. The AFM allows us to determine the force necessary to move a cantilever tip laterally across the surface with atomic resolution. A theoretical
PDF
Album
Full Research Paper
Published 26 Mar 2015

Capillary and van der Waals interactions on CaF2 crystals from amplitude modulation AFM force reconstruction profiles under ambient conditions

  • Annalisa Calò,
  • Oriol Vidal Robles,
  • Sergio Santos and
  • Albert Verdaguer

Beilstein J. Nanotechnol. 2015, 6, 809–819, doi:10.3762/bjnano.6.84

Graphical Abstract
  • objects or a nanoscale object and a plane. Arguably, the advent of the atomic force microscope AFM was instrumental in driving such efforts because, in principle, force profiles could be recovered directly. Nevertheless, it has taken years before techniques have developed enough as to recover the
PDF
Album
Supp Info
Full Research Paper
Published 25 Mar 2015

Entropy effects in the collective dynamic behavior of alkyl monolayers tethered to Si(111)

  • Christian Godet

Beilstein J. Nanotechnol. 2015, 6, 583–594, doi:10.3762/bjnano.6.60

Graphical Abstract
  • dissipation mechanisms is the behavior of tethered OML under compressive and shear forces, as found in nano-tribology experiments, where external forces can cause conformational changes. Again, a disorder gradient results from the formation of gauche defects which can be reverted when the atomic force
  • microscope (AFM) tip is moved away (laterally or vertically) [7][9][10][11][12][13][14][15][16][18][21][23][24]. In the field of molecular electronics, many studies were performed by using junctions made of alkyl OML tethered to oxide-free silicon surfaces through chemically stable non-polar Si–C bonds [4
PDF
Album
Full Research Paper
Published 26 Feb 2015

A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

  • Tobias Meier,
  • Alexander Förste,
  • Ali Tavassolizadeh,
  • Karsten Rott,
  • Dirk Meyners,
  • Roland Gröger,
  • Günter Reiss,
  • Eckhard Quandt,
  • Thomas Schimmel and
  • Hendrik Hölscher

Beilstein J. Nanotechnol. 2015, 6, 451–461, doi:10.3762/bjnano.6.46

Graphical Abstract
  • , Universitässtraße 25, 33615 Bielefeld, Germany Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany 10.3762/bjnano.6.46 Abstract We describe an atomic force microscope (AFM) for the characterization of self-sensing tunneling magnetoresistive (TMR
  • effects; magnetostriction; scanning probe microscopes and components; Introduction Since its invention in the 1980s [1] the atomic force microscope (AFM) became a versatile tool frequently used in nanoscale metrology, biosensing, maskless lithography and high density data storage with nearly as many
  •  7b. The topography of the sample, however, is revealed clearly (see Figure 7a). Conclusion To conclude, we presented an atomic force microscope with a nested scanner design of two independent piezo scanners for the imaging of surfaces up to 800 × 800 μm2. The AFM is capable of switching from the
PDF
Album
Video
Full Research Paper
Published 13 Feb 2015

Mechanical properties of MDCK II cells exposed to gold nanorods

  • Anna Pietuch,
  • Bastian Rouven Brückner,
  • David Schneider,
  • Marco Tarantola,
  • Christina Rosman,
  • Carsten Sönnichsen and
  • Andreas Janshoff

Beilstein J. Nanotechnol. 2015, 6, 223–231, doi:10.3762/bjnano.6.21

Graphical Abstract
  • atomic force microscope (AFM) by taking force curves at each spot the probe touches the sample surface. These force indentation curves are frequently subject to regression analysis employing Hertzian contact models that permit to assess the cell’s Young’s modulus. The modulus bears invaluable information
PDF
Album
Full Research Paper
Published 20 Jan 2015

Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes

  • Gemma Rius,
  • Matteo Lorenzoni,
  • Soichiro Matsui,
  • Masaki Tanemura and
  • Francesc Perez-Murano

Beilstein J. Nanotechnol. 2015, 6, 215–222, doi:10.3762/bjnano.6.20

Graphical Abstract
  • capability of in situ inspection, which provides additional control over the fabrication process including pattern placement [2]. SPL can be performed in a wide variety of instrument configurations and operation modes, such as in scanning tunneling microscopy (STM) or atomic force microscope (AFM). Based on
PDF
Album
Full Research Paper
Published 19 Jan 2015

Multifunctional layered magnetic composites

  • Maria Siglreitmeier,
  • Baohu Wu,
  • Tina Kollmann,
  • Martin Neubauer,
  • Gergely Nagy,
  • Dietmar Schwahn,
  • Vitaliy Pipich,
  • Damien Faivre,
  • Dirk Zahn,
  • Andreas Fery and
  • Helmut Cölfen

Beilstein J. Nanotechnol. 2015, 6, 134–148, doi:10.3762/bjnano.6.13

Graphical Abstract
  • pressure. To account for the manifold of possible arrangements intrinsic to the systems complexity a series of 200 independent docking runs were performed for each ionic species. Mechanical characterization Force spectroscopy experiments were conducted at the atomic force microscope (AFM) Nanowizard® I
PDF
Album
Supp Info
Full Research Paper
Published 12 Jan 2015

High-frequency multimodal atomic force microscopy

  • Adrian P. Nievergelt,
  • Jonathan D. Adams,
  • Pascal D. Odermatt and
  • Georg E. Fantner

Beilstein J. Nanotechnol. 2014, 5, 2459–2467, doi:10.3762/bjnano.5.255

Graphical Abstract
  • ; small cantilevers; Introduction The atomic force microscope (AFM) has developed into an extremely useful and versatile tool for nanometre-scale visualization and mechanical characterization. In recent years, several methods have been developed for simultaneous measurement of topographical and
PDF
Album
Full Research Paper
Published 22 Dec 2014

Advanced atomic force microscopy techniques II

  • Thilo Glatzel,
  • Ricardo Garcia and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 2326–2327, doi:10.3762/bjnano.5.241

Graphical Abstract
  • invention of the scanning tunneling microscope (STM) in 1982 [1][2][3] and of the atomic force microscope (AFM) in 1986 [4]. These tools opened a huge field of nanoscale studies, from metal surfaces and clusters, molecular structures, insulators to liquid and electrochemical environments and even allowed
PDF
Editorial
Published 03 Dec 2014

Modification of a single-molecule AFM probe with highly defined surface functionality

  • Fei Long,
  • Bin Cao,
  • Ashok Khanal,
  • Shiyue Fang and
  • Reza Shahbazian-Yassar

Beilstein J. Nanotechnol. 2014, 5, 2122–2128, doi:10.3762/bjnano.5.221

Graphical Abstract
  • , Michigan, USA 10.3762/bjnano.5.221 Abstract Single-molecule force spectroscopy with an atomic force microscope has been widely used to study inter- and intramolecular interactions. To obtain data consistent with single molecular events, a well-defined method is critical to limit the number of molecules at
PDF
Album
Supp Info
Full Research Paper
Published 14 Nov 2014

Hydrophobic interaction governs unspecific adhesion of staphylococci: a single cell force spectroscopy study

  • Nicolas Thewes,
  • Peter Loskill,
  • Philipp Jung,
  • Henrik Peisker,
  • Markus Bischoff,
  • Mathias Herrmann and
  • Karin Jacobs

Beilstein J. Nanotechnol. 2014, 5, 1501–1512, doi:10.3762/bjnano.5.163

Graphical Abstract
  • measuring bacterial adhesion forces has been introduced: single-cell force spectroscopy is a special mode of an atomic force microscope (AFM) [16] and is optimized to investigate adhesion forces [17][18] of single bacterial cells in a very controlled manner: By using AFM-cantilevers functionalized with
PDF
Album
Full Research Paper
Published 10 Sep 2014

Near-field photochemical and radiation-induced chemical fabrication of nanopatterns of a self-assembled silane monolayer

  • Ulrich C. Fischer,
  • Carsten Hentschel,
  • Florian Fontein,
  • Linda Stegemann,
  • Christiane Hoeppener,
  • Harald Fuchs and
  • Stefanie Hoeppener

Beilstein J. Nanotechnol. 2014, 5, 1441–1449, doi:10.3762/bjnano.5.156

Graphical Abstract
  • the mask, which effectively quenches the fluorescence and suppresses the bleaching processes [24][25]. Figure 2c shows the topography of such a fluorescent pattern as obtained with an atomic force microscope (AFM). The unbleached regions show a weak topographic step of the order of 1 nm with sharp
  • after covalent binding of fluorescein molecules to the amino groups of the APTES. (c) Topography recorded by an atomic force microscope of an APTES SAM nanopattern obtained by the same procedure using a mask produced from a projection pattern of 0.22 µm latex beads after binding of negatively charged
PDF
Album
Full Research Paper
Published 03 Sep 2014

Self-organization of mesoscopic silver wires by electrochemical deposition

  • Sheng Zhong,
  • Thomas Koch,
  • Stefan Walheim,
  • Harald Rösner,
  • Eberhard Nold,
  • Aaron Kobler,
  • Torsten Scherer,
  • Di Wang,
  • Christian Kübel,
  • Mu Wang,
  • Horst Hahn and
  • Thomas Schimmel

Beilstein J. Nanotechnol. 2014, 5, 1285–1290, doi:10.3762/bjnano.5.142

Graphical Abstract
  • ]. Yet the AAM-mediated nanowires are often inhomogeneous in morphology, poly-crystalline in structure, and fragile in their mechanical properties. This is also true for nanowires fabricated with the tip of an atomic force microscope used as a mechano-electrochemical pen [25]. As reported recently, this
PDF
Album
Full Research Paper
Published 15 Aug 2014

Dry friction of microstructured polymer surfaces inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe,
  • Elena Fadeeva and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 1091–1103, doi:10.3762/bjnano.5.122

Graphical Abstract
  • [44], the detailed characterization of the surface topography was performed by a NanoWizard® atomic force microscope (JPK Instruments), mounted on an inverted light microscope (Zeiss Axiovert 135, Carl Zeiss MicroImaging GmbH). The SIMPS were imaged by using the intermittent contact mode of the AFM
PDF
Album
Full Research Paper
Published 21 Jul 2014

The study of surface wetting, nanobubbles and boundary slip with an applied voltage: A review

  • Yunlu Pan,
  • Bharat Bhushan and
  • Xuezeng Zhao

Beilstein J. Nanotechnol. 2014, 5, 1042–1065, doi:10.3762/bjnano.5.117

Graphical Abstract
  • was prepared as described in the last section. The nanobubbles were imaged and recorded with a Dimension 3000 atomic force microscope (AFM) (Bruker Instruments, Santa Barbara, CA) in tapping mode. In order to image in liquid, the AFM cantilever was held by a polychlorotrifluoroethylene (PCTFE) fluid
PDF
Album
Review
Published 15 Jul 2014

Fibrillar adhesion with no clusterisation: Functional significance of material gradient along adhesive setae of insects

  • Stanislav N. Gorb and
  • Alexander E. Filippov

Beilstein J. Nanotechnol. 2014, 5, 837–845, doi:10.3762/bjnano.5.95

Graphical Abstract
  • presented the combined study on the material structure and local mechanical properties in tarsal setae of the beetle Coccinella septempunctata and demonstrated the presence of a material gradient at the level of each single seta [12]. Setal elasticity modulus, probed by atomic force microscope (AFM), ranges
PDF
Album
Supp Info
Full Research Paper
Published 12 Jun 2014

Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation

  • Dave Maharaj and
  • Bharat Bhushan

Beilstein J. Nanotechnol. 2014, 5, 822–836, doi:10.3762/bjnano.5.94

Graphical Abstract
  • . With the advent of the atomic force microscope (AFM) and specialized commercial depth-sensing indenters, the probing of mechanical properties on the micro- and nanoscale under ultra- low loads has become possible [1][2]. In particular, the use of a nanoindenter with depth sensing is ideal, as
PDF
Album
Full Research Paper
Published 11 Jun 2014

A visible-light-driven composite photocatalyst of TiO2 nanotube arrays and graphene quantum dots

  • Donald K. L. Chan,
  • Po Ling Cheung and
  • Jimmy C. Yu

Beilstein J. Nanotechnol. 2014, 5, 689–695, doi:10.3762/bjnano.5.81

Graphical Abstract
  • field-emission scanning electron microscopy (FEI, Quanta 400 FEG). AFM images were obtained using a tapping mode with an atomic force microscope (Bruker, Dimension Icon). UV–vis spectra were recorded on a UV–vis spectrometer (Varian, Cary 100). The PL measurements were performed using a fluorescence
PDF
Album
Supp Info
Full Research Paper
Published 22 May 2014

Towards precise defect control in layered oxide structures by using oxide molecular beam epitaxy

  • Federico Baiutti,
  • Georg Christiani and
  • Gennady Logvenov

Beilstein J. Nanotechnol. 2014, 5, 596–602, doi:10.3762/bjnano.5.70

Graphical Abstract
  • is measured by a multimode atomic force microscope (AFM) by Veeco. In Figure 3 and Figure 4 we show AFM images for 25 nm thick La2NiO4 on SrTiO3 (STO) substrate and for La2CuO4 on LaSrAlO4 (LSAO) grown in our system, that suggest how our films are free from secondary phases outgrows and that layer-by
PDF
Album
Review
Published 08 May 2014

Exploring the complex mechanical properties of xanthan scaffolds by AFM-based force spectroscopy

  • Hao Liang,
  • Guanghong Zeng,
  • Yinli Li,
  • Shuai Zhang,
  • Huiling Zhao,
  • Lijun Guo,
  • Bo Liu and
  • Mingdong Dong

Beilstein J. Nanotechnol. 2014, 5, 365–373, doi:10.3762/bjnano.5.42

Graphical Abstract
  • 10.3762/bjnano.5.42 Abstract The polysaccharide xanthan has been extensively studied owing to its potential application in tissue engineering. In this paper, xanthan scaffold structures were investigated by atomic force microscope (AFM) in liquid, and the mechanical properties of the complex xanthan
PDF
Album
Full Research Paper
Published 27 Mar 2014

Noncontact atomic force microscopy II

  • Mehmet Z. Baykara and
  • Udo D. Schwarz

Beilstein J. Nanotechnol. 2014, 5, 289–290, doi:10.3762/bjnano.5.31

Graphical Abstract
  • (STM). While it is possible to obtain atomic-resolution images of material surfaces by using STM with relative ease, its basic operational principle depends on the phenomenon of quantum tunneling, rendering the technique applicable only to conductive and semi-conductive samples. The atomic force
  • microscope (AFM), which was invented only a few years after the introduction of the STM, overcame this fundamental limitation and was used with great success to image a number of sample surfaces with nanometer resolution without limitations associated with electrical conductivity. However, unlike the STM
PDF
Editorial
Published 12 Mar 2014

The role of surface corrugation and tip oscillation in single-molecule manipulation with a non-contact atomic force microscope

  • Christian Wagner,
  • Norman Fournier,
  • F. Stefan Tautz and
  • Ruslan Temirov

Beilstein J. Nanotechnol. 2014, 5, 202–209, doi:10.3762/bjnano.5.22

Graphical Abstract
PDF
Album
Supp Info
Full Research Paper
Published 26 Feb 2014

Fabrication of carbon nanomembranes by helium ion beam lithography

  • Xianghui Zhang,
  • Henning Vieker,
  • André Beyer and
  • Armin Gölzhäuser

Beilstein J. Nanotechnol. 2014, 5, 188–194, doi:10.3762/bjnano.5.20

Graphical Abstract
  • characterized by bulge test in an atomic force microscope (AFM): biphenyl-based CNMs possess a Young’s modulus of ca. 10 GPa and a remarkable tensile strength of ca. 600 MPa [4]. The possibility of transferring CNMs and their high mechanical strength make them suitable candidates for nanoelectromechanical
PDF
Album
Full Research Paper
Published 21 Feb 2014

Influence of the adsorption geometry of PTCDA on Ag(111) on the tip–molecule forces in non-contact atomic force microscopy

  • Gernot Langewisch,
  • Jens Falter,
  • André Schirmeisen and
  • Harald Fuchs

Beilstein J. Nanotechnol. 2014, 5, 98–104, doi:10.3762/bjnano.5.9

Graphical Abstract
  • atomic force microscope (Omicron LT-SPM) that was operated in frequency-modulation mode [11] under ultrahigh vacuum conditions and at a temperature of ≈5 K using a tuning fork sensor (resonance frequency f0 = 24640 Hz, spring constant k ≈ 2000 N/m) in the qPlus design [12]. The amplitude of the sensor
PDF
Album
Full Research Paper
Published 27 Jan 2014

Friction behavior of a microstructured polymer surface inspired by snake skin

  • Martina J. Baum,
  • Lars Heepe and
  • Stanislav N. Gorb

Beilstein J. Nanotechnol. 2014, 5, 83–97, doi:10.3762/bjnano.5.8

Graphical Abstract
  • NanoWizard® atomic force microscope (JPK Instruments), mounted on an inverted light microscope (Zeiss Axiovert 135, Carl Zeiss MicroImaging GmbH). The SIMPS were imaged by using the intermittent contact mode of the AFM. The error channel (also known as the amplitude channel) visualizes the change in damping
PDF
Album
Full Research Paper
Published 24 Jan 2014
Other Beilstein-Institut Open Science Activities