Search results

Search for "biomolecules" in Full Text gives 205 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

Reasons and remedies for the agglomeration of multilayered graphene and carbon nanotubes in polymers

  • Rasheed Atif and
  • Fawad Inam

Beilstein J. Nanotechnol. 2016, 7, 1174–1196, doi:10.3762/bjnano.7.109

Graphical Abstract
  • osteoblasts (bone-forming cells) and neurons, and found to be effective nano-carriers for several biomolecules such as proteins, DNA and carbohydrates [4]. Recently, MLG/CNT–polymer nanocomposites have been explored as scaffolds for cell growth and load-bearing implant materials for replacing defective human
PDF
Album
Full Research Paper
Published 12 Aug 2016

An ellipsometric approach towards the description of inhomogeneous polymer-based Langmuir layers

  • Falko O. Rottke,
  • Burkhard Schulz,
  • Klaus Richau,
  • Karl Kratz and
  • Andreas Lendlein

Beilstein J. Nanotechnol. 2016, 7, 1156–1165, doi:10.3762/bjnano.7.107

Graphical Abstract
  • films. It is our expectation that achievement of a comparable or even a greater impact by ellipsometric mapping is possible for analysis of layers consisting of proteins, enzymes or other biomolecules. Furthermore, the vertical dimension of their monolayers may even exceed the ultrathin film limit
PDF
Album
Full Research Paper
Published 08 Aug 2016

Large-scale fabrication of achiral plasmonic metamaterials with giant chiroptical response

  • Morten Slyngborg,
  • Yao-Chung Tsao and
  • Peter Fojan

Beilstein J. Nanotechnol. 2016, 7, 914–925, doi:10.3762/bjnano.7.83

Graphical Abstract
  • optical activity [9] such as circular dichroism (CD) [10]. Among other things, this makes them useful for the production of sensing devices for organic molecules and biomolecules [10]. Recently, the phenomena of the long proposed extrinsic chirality dating back to 1945 [11] have been observed
  • is the angle where the ECMs exhibit mirror symmetry and hence do not yield a CD response. Though some PCMs show promise as they also yield huge CD responses through FANO resonance [14], the greatest advantage of ECMs is that sensing of biomolecules can be performed with only one sample in one
  • gold deposition [26] and structures formed by carbon nanotubes [27]. However, in order to be able to apply these metamaterials in sensing devices of organic molecules and biomolecules a reliable large-area fabrication method is required. State-of-the-art fabrication techniques are based on electron
PDF
Album
Full Research Paper
Published 24 Jun 2016

Templated green synthesis of plasmonic silver nanoparticles in onion epidermal cells suitable for surface-enhanced Raman and hyper-Raman scattering

  • Marta Espina Palanco,
  • Klaus Bo Mogensen,
  • Marina Gühlke,
  • Zsuzsanna Heiner,
  • Janina Kneipp and
  • Katrin Kneipp

Beilstein J. Nanotechnol. 2016, 7, 834–840, doi:10.3762/bjnano.7.75

Graphical Abstract
  • space and cell walls. We did not measure SERS signals that we could ascribe to intrinsic biomolecules present in the plant tissue. This is in accordance with the assumption that mainly carbohydrate species (such as pectin) are present the cell walls and in the extracellular space and with the finding
  • . Moreover, at the applied 532 nm excitation, CV benefits from additional resonance enhancement as a further advantage over colorless biomolecules. In addition to one-photon-excited SERS we checked the silver nanostructures in onion layers also by two-photon-excited SEHRS. In a hyper-Raman process, two
PDF
Album
Full Research Paper
Published 09 Jun 2016

Hierarchical coassembly of DNA–triptycene hybrid molecular building blocks and zinc protoporphyrin IX

  • Rina Kumari,
  • Sumit Singh,
  • Mohan Monisha,
  • Sourav Bhowmick,
  • Anindya Roy,
  • Neeladri Das and
  • Prolay Das

Beilstein J. Nanotechnol. 2016, 7, 697–707, doi:10.3762/bjnano.7.62

Graphical Abstract
  • covalent conjugation of triptycene derivatives with any biomolecules has not yet been reported. Using the functionalization of tryptycene with DNA, the construction of tailorable porous structures is envisioned here. The insertion of synthetic molecules into DNA could alter the assembly outcome as well as
PDF
Album
Supp Info
Full Research Paper
Published 12 May 2016

Novel roles for well-known players: from tobacco mosaic virus pests to enzymatically active assemblies

  • Claudia Koch,
  • Fabian J. Eber,
  • Carlos Azucena,
  • Alexander Förste,
  • Stefan Walheim,
  • Thomas Schimmel,
  • Alexander M. Bittner,
  • Holger Jeske,
  • Hartmut Gliemann,
  • Sabine Eiben,
  • Fania C. Geiger and
  • Christina Wege

Beilstein J. Nanotechnol. 2016, 7, 613–629, doi:10.3762/bjnano.7.54

Graphical Abstract
  • scaffolds for the efficient and advantageous display of biomolecules, namely of active enzymes. Review From virus discovery to current research trends Around the turn of the 19th century, a new type of infectious agent, the 'virus', was discovered [9][10]. During the following decades it was proven that all
PDF
Album
Review
Published 25 Apr 2016

Molecular machines and devices

  • Jan van Ruitenbeek

Beilstein J. Nanotechnol. 2016, 7, 310–311, doi:10.3762/bjnano.7.29

Graphical Abstract
  • experimental evidence is presented. The progress in theory and experiment on single-molecule electron transport can be judged from many contributions in this volume. On the other hand, some subjects are not as well-covered, including electron transport in biomolecules and one-dimensional conductors. This is
PDF
Editorial
Published 01 Mar 2016

Functional fusion of living systems with synthetic electrode interfaces

  • Oskar Staufer,
  • Sebastian Weber,
  • C. Peter Bengtson,
  • Hilmar Bading,
  • Joachim P. Spatz and
  • Amin Rustom

Beilstein J. Nanotechnol. 2016, 7, 296–301, doi:10.3762/bjnano.7.27

Graphical Abstract
  • developed into a principal ambition for various scientific disciplines. In particular, emerging fields such as bionics and nanomedicine integrate advanced nanomaterials with biomolecules, cells and organisms in order to develop novel strategies for applications, including energy production or real-time
PDF
Album
Supp Info
Letter
Published 26 Feb 2016

Surface coating affects behavior of metallic nanoparticles in a biological environment

  • Darija Domazet Jurašin,
  • Marija Ćurlin,
  • Ivona Capjak,
  • Tea Crnković,
  • Marija Lovrić,
  • Michal Babič,
  • Daniel Horák,
  • Ivana Vinković Vrček and
  • Srećko Gajović

Beilstein J. Nanotechnol. 2016, 7, 246–262, doi:10.3762/bjnano.7.23

Graphical Abstract
  • all of the possible NP modifications and interactions. In such an environment, the dynamic adsorption of different biomolecules onto the surface of metallic NPs is a well-established fact, which irreversibly changes the nature of the original NPs [61][65]. In order to examine how differently coated
PDF
Album
Full Research Paper
Published 15 Feb 2016

Characterisation of thin films of graphene–surfactant composites produced through a novel semi-automated method

  • Nik J. Walch,
  • Alexei Nabok,
  • Frank Davis and
  • Séamus P. J. Higson

Beilstein J. Nanotechnol. 2016, 7, 209–219, doi:10.3762/bjnano.7.19

Graphical Abstract
  • coverage) were obtained by using a simple technique of electrostatic layer-by-layer (LbL) deposition, a well-established technique developed first for polyelectrolytes [10] and later adapted for deposition of other objects, such as nanoparticles and biomolecules (proteins, antibodies, enzymes, DNA) [9][11
PDF
Album
Full Research Paper
Published 08 Feb 2016

Single-molecule mechanics of protein-labelled DNA handles

  • Vivek S. Jadhav,
  • Dorothea Brüggemann,
  • Florian Wruck and
  • Martin Hegner

Beilstein J. Nanotechnol. 2016, 7, 138–148, doi:10.3762/bjnano.7.16

Graphical Abstract
  • .7.16 Abstract DNA handles are often used as spacers and linkers in single-molecule experiments to isolate and tether RNAs, proteins, enzymes and ribozymes, amongst other biomolecules, between surface-modified beads for nanomechanical investigations. Custom DNA handles with varying lengths and chemical
  • , their further individual modification with protein receptors is less common and would allow for additional flexibility in grabbing biomolecules for mechanical measurements. In-depth information on reliable protocols for the synthesis of these DNA–protein hybrids and on their mechanical characteristics
  • implemented (not shown) and test configurations in which a prospective biomolecular construct was directly grafted to the sphere surfaces. To simulate in situ tethering to complex biomolecules, we used PDHs to grasp single DNA molecules in situ (Figure 1d,e). For experimental configurations illustrated in
PDF
Album
Full Research Paper
Published 29 Jan 2016

Green and energy-efficient methods for the production of metallic nanoparticles

  • Mitra Naghdi,
  • Mehrdad Taheran,
  • Satinder K. Brar,
  • M. Verma,
  • R. Y. Surampalli and
  • J. R. Valero

Beilstein J. Nanotechnol. 2015, 6, 2354–2376, doi:10.3762/bjnano.6.243

Graphical Abstract
  • place for 2 h and the C=O and C–O groups in the extract stabilized NPs. They also concluded that the water-soluble polyhydroxy biomolecules, such as flavonoids and sugars, are accountable for the reduction of metallic ions [106]. Swamy et al. reduced AgNO3 to Ag NPs using methanolic leaf extract of
PDF
Album
Review
Published 10 Dec 2015

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • specific application. Thus, various ligands and functionalities have to be attached to the particle surface to provide efficient drug delivery, to ensure engulfment by the cells, or to control the release of biomolecules and their specific target. Finally, the surface modification must ensure that the
  • particles to be considered as probes of target proteins, oligonucleotides and other biomolecules in cells and tissues. DLS experiments showed that the average hydrodynamic particle size in water was large (Dh = 163–265 nm), suggesting the formation of particle aggregates. DLS provides the z-average of the
PDF
Album
Full Research Paper
Published 03 Dec 2015

Orthogonal chemical functionalization of patterned gold on silica surfaces

  • Francisco Palazon,
  • Didier Léonard,
  • Thierry Le Mogne,
  • Francesca Zuttion,
  • Céline Chevalier,
  • Magali Phaner-Goutorbe,
  • Éliane Souteyrand,
  • Yann Chevolot and
  • Jean-Pierre Cloarec

Beilstein J. Nanotechnol. 2015, 6, 2272–2277, doi:10.3762/bjnano.6.233

Graphical Abstract
  • hot spot areas. Orthogonal surface chemical functionalization appears to enable such directed anchoring of target biomolecules (Figure 1) [6][8][9]. Despite the aforementioned publications, there is still much to be investigated regarding the orthogonal functionalization of patterned metal on
  • . Second, while biotinylated poly(ethylene glycol) [5][6][7][8] may be well suited to immobilize some biomolecules (avidin derivatives), it is worth considering other surface chemistries. For instance, carboxylic acid-based [10][11][12][13][14][15][16][17][18][19][20][21], amine-based [22][23][24][25][26
  • ] or other [27][28] self-assembled monolayers may provide a higher diversity of potential biomolecules to immobilize. Shorter spacer chains (e.g., short alkyl chains) may also be useful to immobilize the target as close to the metal surface (i.e., the maximum intensity of the evanescent field) as
PDF
Album
Letter
Published 01 Dec 2015

A simple and efficient quasi 3-dimensional viscoelastic model and software for simulation of tapping-mode atomic force microscopy

  • Santiago D. Solares

Beilstein J. Nanotechnol. 2015, 6, 2233–2241, doi:10.3762/bjnano.6.229

Graphical Abstract
  • interactions. A few examples of these processes include viscoelastic deformation, irreversible molecular structure changes (e.g., in biomolecules) and plastic deformation in crystals. These phenomena bring challenges into AFM characterization primarily in two ways. First, in delicate samples, such as
  • biomolecules, it becomes necessary to control the maximum tip–sample interaction forces and stresses, such that undesirable irreversible changes do not occur in the sample. Second, the interpretation of the experiment requires the user to make assumptions and/or develop models that properly account for the
PDF
Album
Supp Info
Full Research Paper
Published 26 Nov 2015

Au nanoparticle-based sensor for apomorphine detection in plasma

  • Chiara Zanchi,
  • Andrea Lucotti,
  • Matteo Tommasini,
  • Sebastiano Trusso,
  • Ugo de Grazia,
  • Emilio Ciusani and
  • Paolo M. Ossi

Beilstein J. Nanotechnol. 2015, 6, 2224–2232, doi:10.3762/bjnano.6.228

Graphical Abstract
  • colloids synthesized by laser ablation in liquids, suitably functionalized and tagged with Raman reporters, have effectively revealed specific biomolecules, even in chemically complex environments such as cells [9][10][11][12]. On the other hand, silver and gold colloids produced by chemical routes can be
PDF
Album
Full Research Paper
Published 26 Nov 2015

Selective porous gates made from colloidal silica nanoparticles

  • Roberto Nisticò,
  • Paola Avetta,
  • Paola Calza,
  • Debora Fabbri,
  • Giuliana Magnacca and
  • Dominique Scalarone

Beilstein J. Nanotechnol. 2015, 6, 2105–2112, doi:10.3762/bjnano.6.215

Graphical Abstract
  • the separation of chemical species, ions and biomolecules in solution is a field of increasing interest for researchers involved in microfiltration and separation science [1][2][3][4][5][6][7]. In this topic, it is important to remind that microfiltration is one of the oldest processes optimized since
PDF
Album
Supp Info
Full Research Paper
Published 04 Nov 2015

Light-powered, artificial molecular pumps: a minimalistic approach

  • Giulio Ragazzon,
  • Massimo Baroncini,
  • Serena Silvi,
  • Margherita Venturi and
  • Alberto Credi

Beilstein J. Nanotechnol. 2015, 6, 2096–2104, doi:10.3762/bjnano.6.214

Graphical Abstract
  • ]. Indeed, owing to the progress in molecular biology, we know that living beings are endowed with biomolecules that can replicate genetic material, transport substances inside cells or across membranes, and can be switched on and off in response to external stimuli [3]. Other classes of proteins
PDF
Album
Review
Published 02 Nov 2015

Optimized design of a nanostructured SPCE-based multipurpose biosensing platform formed by ferrocene-tethered electrochemically-deposited cauliflower-shaped gold nanoparticles

  • Wicem Argoubi,
  • Maroua Saadaoui,
  • Sami Ben Aoun and
  • Noureddine Raouafi

Beilstein J. Nanotechnol. 2015, 6, 1840–1852, doi:10.3762/bjnano.6.187

Graphical Abstract
  • recent works support the fact the electron-transfer rates can be enhanced by the conformational changes especially of long alkyl chains and biomolecules used to tether ferrocene to a gold surface [31][32][33][34]. The current variation stopped at high concentration because of the saturation of all the
PDF
Album
Supp Info
Full Research Paper
Published 01 Sep 2015

Towards multifunctional inorganic materials: biopolymeric templates

  • Claudia Steinem and
  • Joachim Bill

Beilstein J. Nanotechnol. 2015, 6, 1698–1699, doi:10.3762/bjnano.6.172

Graphical Abstract
  • Forschungsgemeinschaft in Germany. Correspondingly, this Thematic Series addresses multifunctional, inorganic materials generated by templating with biomolecules. The reader of this series will gain a comprehensive overview about the general ideas and principles of biopolymeric templating by means of selected examples
PDF
Editorial
Published 05 Aug 2015

Synthesis, characterization and in vitro biocompatibility study of Au/TMC/Fe3O4 nanocomposites as a promising, nontoxic system for biomedical applications

  • Hanieh Shirazi,
  • Maryam Daneshpour,
  • Soheila Kashanian and
  • Kobra Omidfar

Beilstein J. Nanotechnol. 2015, 6, 1677–1689, doi:10.3762/bjnano.6.170

Graphical Abstract
  • biocompatibility), they can be utilized as catalysts, labels, and as a protective substrate, especially for immobilization of biomolecules in various fields of modern science [29][30]. Au nanoparticles are extensively used in the design and construction of fuel cells and many types of sensors (e.g
PDF
Album
Full Research Paper
Published 03 Aug 2015

Fulleropeptide esters as potential self-assembled antioxidants

  • Mira S. Bjelaković,
  • Tatjana J. Kop,
  • Jelena Đorđević and
  • Dragana R. Milić

Beilstein J. Nanotechnol. 2015, 6, 1065–1071, doi:10.3762/bjnano.6.107

Graphical Abstract
  • contribution to the development of carriers for biomolecules [21]. Higashi and co-workers have reported the aggregation properties and a high superoxide scavenging activity of fullerene–poly(Glu)peptide nanoparticles as self-assembled structures [22]. Fullerene C60 and fulleropyrrolidine derivatives showed
PDF
Album
Supp Info
Full Research Paper
Published 27 Apr 2015

A simple approach to the synthesis of Cu1.8S dendrites with thiamine hydrochloride as a sulfur source and structure-directing agent

  • Xiaoliang Yan,
  • Sha Li,
  • Yun-xiang Pan,
  • Zhi Yang and
  • Xuguang Liu

Beilstein J. Nanotechnol. 2015, 6, 881–885, doi:10.3762/bjnano.6.90

Graphical Abstract
  • -friendly preparation of metal sulfide nano/micro-materials is sought for. Biomolecules have been widely used as a sulfur sources and structure-directing agents in the synthesis of metal sulfides [11][12]. Kim et al. used 2-mercaptoethanol to synthesize high-aspect ratio and single-crystalline nanowires of
  • investigated the morphology evolution of Cu1.8S as a function of the hydrothermal process time. Burford et al. reported that the functional groups in biomolecules, e.g., –NH2, –COOH, and –S–, are strongly inclined to interact with inorganic cations based on a mass spectrometry study [13]. This indicates that
  • metal ions could interact with biomolecules to form stable complexes. In this experiment, copper nitrate and thiamine hydrochloride is dissolved in water to form a mixture in which Cu2+ ions coordinate with thiamine hydrochloride to form a complex. When the mixture was sealed and kept at 180 °C under
PDF
Album
Full Research Paper
Published 01 Apr 2015

Protein corona – from molecular adsorption to physiological complexity

  • Lennart Treuel,
  • Dominic Docter,
  • Michael Maskos and
  • Roland H. Stauber

Beilstein J. Nanotechnol. 2015, 6, 857–873, doi:10.3762/bjnano.6.88

Graphical Abstract
  • Hospital of Mainz, Langenbeckstrasse 1, 55101 Mainz, Germany 10.3762/bjnano.6.88 Abstract In biological environments, nanoparticles are enshrouded by a layer of biomolecules, predominantly proteins, mediating its subsequent interactions with cells. Detecting this protein corona, understanding its
  • to high electrolyte concentrations and sometimes even due to interaction with biomolecules. Not only do the subsequent agglomeration processes lead to a loss of accessible surface area, they also lead to changes in diffusion properties and, in case of larger agglomerates, give rise to sedimentation
PDF
Album
Review
Published 30 Mar 2015

Influence of gold, silver and gold–silver alloy nanoparticles on germ cell function and embryo development

  • Ulrike Taylor,
  • Daniela Tiedemann,
  • Christoph Rehbock,
  • Wilfried A. Kues,
  • Stephan Barcikowski and
  • Detlef Rath

Beilstein J. Nanotechnol. 2015, 6, 651–664, doi:10.3762/bjnano.6.66

Graphical Abstract
  • medical and consumer products. Gold and silver nanoparticles play an important role in the current increase of nanoparticle usage. However, our understanding concerning possible side effects of this increased exposure to particles, which are frequently in the same size regime as medium sized biomolecules
  • ) and oligonucleotide conjugated AuNP (diameter 7.3 nm, 94 biomolecules per particle, Zeta potential −32 mV) which were tested by using bovine sperm, as well as bovine serum albumin (BSA) coated gold (diameter 6–20 nm), silver (diameter 11 nm; AgNP) and various gold silver alloy nanoparticles (silver
  • ]. The ex situ method is an alternative approach where the ablation site is physically separated from bioconjugation [80]. To this end laser ablation is carried out in a flow through reactor, while biomolecules are added at specified time delays. Innate to the in situ bioconjugation method is a distinct
PDF
Album
Video
Full Research Paper
Published 05 Mar 2015
Other Beilstein-Institut Open Science Activities