Search results

Search for "crystallites" in Full Text gives 200 result(s) in Beilstein Journal of Nanotechnology.

Microwave solvothermal synthesis and characterization of manganese-doped ZnO nanoparticles

  • Jacek Wojnarowicz,
  • Roman Mukhovskyi,
  • Elzbieta Pietrzykowska,
  • Sylwia Kusnieruk,
  • Jan Mizeracki and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2016, 7, 721–732, doi:10.3762/bjnano.7.64

Graphical Abstract
  • of crystallites was determined (Dhkl) using Scherrer’s formula (Equation 1), where Dhkl is the volume weighted crystallite size [nm]; β is the FWHM of the hkl diffraction peak [rad]; K is a constant shape factor (K ≈ 1), λ is the X-ray wave length [nm] and θhkl is the Bragg diffraction angle
  • increase of Mn2+-dopant content in ZnO leads to changes in proportions (asymmetry) of crystallite sizes. In line with the increase in Mn2+-dopant content, the size of the crystallites in the c-direction decreases (Figure 7). The dc/da ratio can be interpreted as a change in the shape of Zn1−xMnxO particles
  • crystallites were determined for Zn1−xMnxO NPs (Figure 11). Zn1−xMnxO material was characterised by an average crystallite size from 19 to 26 nm (Table 5), with a narrow distribution, which ranged from 30–35 nm to 40–60 nm depending on the dopant content (Figure 11). When comparing the obtained results from
PDF
Album
Full Research Paper
Published 19 May 2016

Orientation of FePt nanoparticles on top of a-SiO2/Si(001), MgO(001) and sapphire(0001): effect of thermal treatments and influence of substrate and particle size

  • Martin Schilling,
  • Paul Ziemann,
  • Zaoli Zhang,
  • Johannes Biskupek,
  • Ute Kaiser and
  • Ulf Wiedwald

Beilstein J. Nanotechnol. 2016, 7, 591–604, doi:10.3762/bjnano.7.52

Graphical Abstract
  • delivers a pattern reflecting the in-plane symmetry of the surface. Sharp spots occur, arranged in the so-called Laue zones [34]. For thin, pseudomorphously grown films, the spots transform to vertical streaks, with their width being inversely proportional on the lateral dimensions of the crystallites
PDF
Album
Full Research Paper
Published 21 Apr 2016

In situ observation of deformation processes in nanocrystalline face-centered cubic metals

  • Aaron Kobler,
  • Christian Brandl,
  • Horst Hahn and
  • Christian Kübel

Beilstein J. Nanotechnol. 2016, 7, 572–580, doi:10.3762/bjnano.7.50

Graphical Abstract
  • supported by a thin (≈20 nm) carbon film (Figure 1b). An additional experiment using an annealed NC AuPd (ncAuPda) thin film was also conducted and the results are compared with the ncPda results at the end of the paper. In this study, a distinction between crystallites and grains is made. Crystallites are
  • defined as the smallest volume with one crystal orientation within a disorientation tolerance of 3° and grains are either single crystallites or multiple crystallites connected by twin boundaries. Results and Discussion All presented ACOM-STEM orientation maps (color coding according to the inverse pole
  • additional local deviations from the sample bending, which appear as local, distinct rotations within the crystallites and in the vicinity of the grain boundaries (examples indicated by black boxes). A mismatch of the relative lattice rotation of neighboring grains needs to be accommodated as a shear
PDF
Album
Supp Info
Full Research Paper
Published 19 Apr 2016

Time-dependent growth of crystalline Au0-nanoparticles in cyanobacteria as self-reproducing bioreactors: 2. Anabaena cylindrica

  • Liz M. Rösken,
  • Felix Cappel,
  • Susanne Körsten,
  • Christian B. Fischer,
  • Andreas Schönleber,
  • Sander van Smaalen,
  • Stefan Geimer,
  • Christian Beresko,
  • Georg Ankerhold and
  • Stefan Wehner

Beilstein J. Nanotechnol. 2016, 7, 312–327, doi:10.3762/bjnano.7.30

Graphical Abstract
  • . Smaller crystallites result in broader peaks, compare Scherrer-equation [62][63]. Since those broad peaks vanish in the noise of the background at some point, the lower limit of detection are some nanometers in one dimension. The instrumental setup used here was able to detect nanoparticles with an
PDF
Album
Supp Info
Full Research Paper
Published 02 Mar 2016

Synthesis and applications of carbon nanomaterials for energy generation and storage

  • Marco Notarianni,
  • Jinzhang Liu,
  • Kristy Vernon and
  • Nunzio Motta

Beilstein J. Nanotechnol. 2016, 7, 149–196, doi:10.3762/bjnano.7.17

Graphical Abstract
  • , highly ordered pyrolytic graphite (HOPG) is chosen in order to guarantee a product of high quality graphene crystallites. The main advantages of this method are the ability to complete this process at room temperature and with inexpensive equipment. However, in terms of scalability, it performs the worst
PDF
Album
Review
Published 01 Feb 2016

Chemical bath deposition of textured and compact zinc oxide thin films on vinyl-terminated polystyrene brushes

  • Nina J. Blumenstein,
  • Caroline G. Hofmeister,
  • Peter Lindemann,
  • Cheng Huang,
  • Johannes Baier,
  • Andreas Leineweber,
  • Stefan Walheim,
  • Christof Wöll,
  • Thomas Schimmel and
  • Joachim Bill

Beilstein J. Nanotechnol. 2016, 7, 102–110, doi:10.3762/bjnano.7.12

Graphical Abstract
  • stronger interaction between the then polar template and polar ZnO crystallites in solution. This may lead to oriented attachment of the crystallites so that the observed (002) texture arises. Characterization of the templates and the resulting ZnO films were performed with ζ-potential and contact angle
  • ), (002), (101), (102) and (110) reflections of hexagonal ZnO are visible in the XRD patterns (cf. JCPDS no. 01-079-0206). For the PS brush sample (Figure 4b), a pronounced preferred orientation of the ZnO crystallites with the hexagonal c-axis perpendicular to the plane of the Si substrate is indicated
  • complete ZnO film is formed. The methyl ester can coordinate the polar ZnO crystallites. This in turn can support an oriented attachment of the nanoparticles to the surface and an anisotropic orientation of the entire film, which was observed by XRD (Figure 4) [42][43]. Conclusion ZnO thin films were grown
PDF
Album
Supp Info
Full Research Paper
Published 25 Jan 2016

Two step formation of metal aggregates by surface X-ray radiolysis under Langmuir monolayers: 2D followed by 3D growth

  • Smita Mukherjee,
  • Marie-Claude Fauré,
  • Michel Goldmann and
  • Philippe Fontaine

Beilstein J. Nanotechnol. 2015, 6, 2406–2411, doi:10.3762/bjnano.6.247

Graphical Abstract
  • spectra during the radiolysis process, we proved that the metal layer anchored to the organic monolayer consisted of silver atoms organized in thin crystallites oriented by the interface [4]. We also studied the kinetics of formation of this silver layer by total reflection X-ray fluorescence (TRXF) and
  • peaks appears as is characteristic of a 2D powder, that is, the crystallites present the same lattice plane parallel to the surface but random in plane orientation. This result is identical to that previously observed [4]. However, in the q-range of the 3D silver structure, the appearance of weaker
  • disoriented crystallites replace the previously oriented ones. We underline that the probed thickness is defined by the penetration depth of the X-ray evanescent wave, and thus, the silver film can be thicker for the latter case. This could be related to the observation of the evolving FWHM of the 2D peaks
PDF
Album
Full Research Paper
Published 15 Dec 2015

Surfactant-controlled composition and crystal structure of manganese(II) sulfide nanocrystals prepared by solvothermal synthesis

  • Elena Capetti,
  • Anna M. Ferretti,
  • Vladimiro Dal Santo and
  • Alessandro Ponti

Beilstein J. Nanotechnol. 2015, 6, 2319–2329, doi:10.3762/bjnano.6.238

Graphical Abstract
  • of both). The rock salt structure of MnS NCs was confirmed by HRTEM: Figure 2a displays lattice fringes separated by 0.258 nm that correspond to the {200} planes of the α-MnS structure. The geometric phase analysis (GPA) [31] showed that the NCs are single crystallites, almost free from lattice
PDF
Album
Supp Info
Full Research Paper
Published 07 Dec 2015

Silica-coated upconversion lanthanide nanoparticles: The effect of crystal design on morphology, structure and optical properties

  • Uliana Kostiv,
  • Miroslav Šlouf,
  • Hana Macková,
  • Alexander Zhigunov,
  • Hana Engstová,
  • Katarína Smolková,
  • Petr Ježek and
  • Daniel Horák

Beilstein J. Nanotechnol. 2015, 6, 2290–2299, doi:10.3762/bjnano.6.235

Graphical Abstract
  • the particles reached 67–77 wt % (Table 1). The amorphous halo originated from OM surrounding the NaYF4:Yb3+/Er3+ crystallites. Sizes of the cubic and hexagonal phases were estimated using the Scherrer equation from the [111] (2θ = 28.2) and [101] (2θ = 30.9) reflections, respectively [35]. XRD
  • of an amorphous halo is indicative of a disorder-to-order type cubic-to-hexagonal phase transition [39]. The size of α crystallites ranged from 6 to 6.5 nm, and the size of β-phase crystals ranged between 18–21 nm. Interestingly, diffraction peaks corresponding to the cubic phase were hardly visible
  • in the OM–NaYF4:Yb3+/Er3+ nanoparticles prepared for 3 h, and the size of the crystallites could not be determined. No structural changes were observed by XRD in the particles prepared at different reaction times, indicating that a 4 h reaction time was not sufficient for full conversion of the
PDF
Album
Full Research Paper
Published 03 Dec 2015

Influence of wide band gap oxide substrates on the photoelectrochemical properties and structural disorder of CdS nanoparticles grown by the successive ionic layer adsorption and reaction (SILAR) method

  • Mikalai V. Malashchonak,
  • Alexander V. Mazanik,
  • Olga V. Korolik,
  • Еugene А. Streltsov and
  • Anatoly I. Kulak

Beilstein J. Nanotechnol. 2015, 6, 2252–2262, doi:10.3762/bjnano.6.231

Graphical Abstract
  • microscopy (SEM) images of indium, zinc, and titanium oxide prepared films are shown in Figure 1. The In2O3 films (Figure 1a,d) have a uniform thickness and are characterized by a more dense packing of the grains as compared to the ZnO deposit, which consists of plate-like crystallites with approximately 100
  • detected using a thermostated CCD matrix with a signal acquisition time typically equal to 120 s. Calibration was performed by means of a built-in gas discharge lamp to an accuracy of ≈1 cm−1. SEM images of In2O3 mesoporous films (a,d), ZnO platelet crystallites (b,e) and anodic TiO2 nanotubes (c,f
PDF
Album
Full Research Paper
Published 30 Nov 2015

Effect of SiNx diffusion barrier thickness on the structural properties and photocatalytic activity of TiO2 films obtained by sol–gel dip coating and reactive magnetron sputtering

  • Mohamed Nawfal Ghazzal,
  • Eric Aubry,
  • Nouari Chaoui and
  • Didier Robert

Beilstein J. Nanotechnol. 2015, 6, 2039–2045, doi:10.3762/bjnano.6.207

Graphical Abstract
  • on SiNx/glass was compared by measuring the FWHM of the (101) diffraction peaks. It was found that for MS-TiO2 samples, the presence of the diffusion barrier does not affect the crystallites size, which was about 24–30 nm in both cases. This result is in agreement with our previous study but for a
PDF
Album
Full Research Paper
Published 16 Oct 2015

Paramagnetism of cobalt-doped ZnO nanoparticles obtained by microwave solvothermal synthesis

  • Jacek Wojnarowicz,
  • Sylwia Kusnieruk,
  • Tadeusz Chudoba,
  • Stanislaw Gierlotka,
  • Witold Lojkowski,
  • Wojciech Knoff,
  • Malgorzata I. Lukasiewicz,
  • Bartlomiej S. Witkowski,
  • Anna Wolska,
  • Marcin T. Klepka,
  • Tomasz Story and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2015, 6, 1957–1969, doi:10.3762/bjnano.6.200

Graphical Abstract
  • morphology. They are composed of loosely agglomerated spherical particles with wurtzite-type crystal structure with crystallites of a mean size of 30 nm. Annealing to temperatures of up to 800 °C induced the growth of crystallites up to a maximum of 2 μm in diameter. For samples annealed in high purity
PDF
Album
Full Research Paper
Published 30 Sep 2015

A facile method for the preparation of bifunctional Mn:ZnS/ZnS/Fe3O4 magnetic and fluorescent nanocrystals

  • Houcine Labiadh,
  • Tahar Ben Chaabane,
  • Romain Sibille,
  • Lavinia Balan and
  • Raphaël Schneider

Beilstein J. Nanotechnol. 2015, 6, 1743–1751, doi:10.3762/bjnano.6.178

Graphical Abstract
  • hematite α-Fe2O3 (JCPDS record number 99-100-0140) can also be observed [26]. Since the surface of finely divided materials is highly reactive, partial oxidation of Fe3O4 into Fe2O3 may have taken place during the handling of the nanocrystals [28][29]. The crystallites sizes of the Mn:ZnS/ZnS/Fe3O4
PDF
Album
Full Research Paper
Published 17 Aug 2015

Structural and magnetic properties of iron nanowires and iron nanoparticles fabricated through a reduction reaction

  • Marcin Krajewski,
  • Wei Syuan Lin,
  • Hong Ming Lin,
  • Katarzyna Brzozka,
  • Sabina Lewinska,
  • Natalia Nedelko,
  • Anna Slawska-Waniewska,
  • Jolanta Borysiuk and
  • Dariusz Wasik

Beilstein J. Nanotechnol. 2015, 6, 1652–1660, doi:10.3762/bjnano.6.167

Graphical Abstract
  • studied nanostructures can be consisted of the small iron crystallites or they can contain a mixture of crystalline and amorphous iron phases [14]. Moreover, no signals originating from iron oxides are observed. This is in contrast to the results mentioned before. TEM and EDX measurements show clearly the
PDF
Album
Full Research Paper
Published 29 Jul 2015

Thermal treatment of magnetite nanoparticles

  • Beata Kalska-Szostko,
  • Urszula Wykowska,
  • Dariusz Satula and
  • Per Nordblad

Beilstein J. Nanotechnol. 2015, 6, 1385–1396, doi:10.3762/bjnano.6.143

Graphical Abstract
  • of rather polycrystalline particles. This was especially clearly observed when larger particles were grown and can be expected from the synthesis. The existence of interfaces between separate crystallites inside each particle can be the reason for a faster oxidation process. Such a scenario is in
PDF
Album
Full Research Paper
Published 23 Jun 2015

From lithium to sodium: cell chemistry of room temperature sodium–air and sodium–sulfur batteries

  • Philipp Adelhelm,
  • Pascal Hartmann,
  • Conrad L. Bender,
  • Martin Busche,
  • Christine Eufinger and
  • Juergen Janek

Beilstein J. Nanotechnol. 2015, 6, 1016–1055, doi:10.3762/bjnano.6.105

Graphical Abstract
  • crystallites (compare Figure 7 with Figure 11). The cells showed only very small combined overpotentials of about 200 mV during cycling which was attributed to the kinetically favored one-electron transfer. Shortly after, similar findings were reported for potassium–oxygen cells. Here, KO2 forms during
PDF
Album
Review
Published 23 Apr 2015

Characterization of nanostructured ZnO thin films deposited through vacuum evaporation

  • Jose Alberto Alvarado,
  • Arturo Maldonado,
  • Héctor Juarez,
  • Mauricio Pacio and
  • Rene Perez

Beilstein J. Nanotechnol. 2015, 6, 971–975, doi:10.3762/bjnano.6.100

Graphical Abstract
  • 1000 °C for 1 h in air), in order to observe the evolution in the formation of these 2D nanostructures. Thin films were deposited using the vacuum metal evaporation system Jeol model JEE-420. The annealing process was done in a conventional oven to reorganize the crystallites and increase the adherence
PDF
Album
Full Research Paper
Published 16 Apr 2015

Transformation of hydrogen titanate nanoribbons to TiO2 nanoribbons and the influence of the transformation strategies on the photocatalytic performance

  • Melita Rutar,
  • Nejc Rozman,
  • Matej Pregelj,
  • Carla Bittencourt,
  • Romana Cerc Korošec,
  • Andrijana Sever Škapin,
  • Aleš Mrzel,
  • Srečo D. Škapin and
  • Polona Umek

Beilstein J. Nanotechnol. 2015, 6, 831–844, doi:10.3762/bjnano.6.86

Graphical Abstract
  • hexagonal shapes (Figure 6A and 6B). When the transformation proceeded hydrothermally (CH-W, CH-N and MW-W), the morphology of the nanoribbons is preserved due to an in situ rearrangement of the structural TiO6 units while small crystallites that cover the nanoribbon surfaces (Figure 5 and Figure 6) are
  • formed through a dissolution–recrystallization process, as suggested by Zhu et al. [14]. The shape of these crystallites strongly depends on the pH of the reaction medium since different ions act as capping agents [31]. Published results [14][20][21] suggest that the stability of HTiNRs in aqueous
PDF
Album
Supp Info
Full Research Paper
Published 27 Mar 2015

Morphology control of zinc oxide films via polysaccharide-mediated, low temperature, chemical bath deposition

  • Florian Waltz,
  • Hans-Christoph Schwarz,
  • Andreas M. Schneider,
  • Stefanie Eiden and
  • Peter Behrens

Beilstein J. Nanotechnol. 2015, 6, 799–808, doi:10.3762/bjnano.6.83

Graphical Abstract
  • , namely hyaluronic acid, is used to manipulate the morphology of the films. Previous experiments revealed a strong influence of this polysaccharide on the formation of zinc oxide crystallites. The present work aims to transfer this gained knowledge to the formation of zinc oxide films. The influence of
  • the formation of crystalline ZnO [30]. Doping is carried out by the simple addition of the corresponding dopant salt to the deposition solution. In addition to doping, the microstructure of the resulting film, which involves the crystallite size as well as the morphology of the crystallites and the
  • investigated the influence of two polysaccharides, hyaluronic acid (HYA) and chondroitin-6 sulfate (C6S), on the morphology of primary ZnO crystallites and on their aggregates, as they are formed in precipitation experiments [42]. Whereas C6S leads to a pronounced platelet-like morphoplogy of the primary
PDF
Album
Full Research Paper
Published 24 Mar 2015

Novel ZnO:Ag nanocomposites induce significant oxidative stress in human fibroblast malignant melanoma (Ht144) cells

  • Syeda Arooj,
  • Samina Nazir,
  • Akhtar Nadhman,
  • Nafees Ahmad,
  • Bakhtiar Muhammad,
  • Ishaq Ahmad,
  • Kehkashan Mazhar and
  • Rashda Abbasi

Beilstein J. Nanotechnol. 2015, 6, 570–582, doi:10.3762/bjnano.6.59

Graphical Abstract
  • Ag cubic structures took place through the adopted in situ doping procedure. The decrease in ZnO peak heights with the increase in Ag amount indicated that ZnO crystal structure deteriorated to smaller crystallites as silver started growing as a separate phase along the ZnO crystals. Rutherford
PDF
Album
Full Research Paper
Published 26 Feb 2015

Nanoparticle shapes by using Wulff constructions and first-principles calculations

  • Georgios D. Barmparis,
  • Zbigniew Lodziana,
  • Nuria Lopez and
  • Ioannis N. Remediakis

Beilstein J. Nanotechnol. 2015, 6, 361–368, doi:10.3762/bjnano.6.35

Graphical Abstract
  • indirect information about structural properties. Theoretical understanding of the nanocrystalline LiBH4 can provide an insight into structural and dynamical properties of crystallites confined in the smallest pores with dimension below 3 nm. The Wulff construction is the starting point for these studies
PDF
Album
Review
Published 03 Feb 2015

Nanoporous Ge thin film production combining Ge sputtering and dopant implantation

  • Jacques Perrin Toinin,
  • Alain Portavoce,
  • Khalid Hoummada,
  • Michaël Texier,
  • Maxime Bertoglio,
  • Sandrine Bernardini,
  • Marco Abbarchi and
  • Lee Chow

Beilstein J. Nanotechnol. 2015, 6, 336–342, doi:10.3762/bjnano.6.32

Graphical Abstract
  • size ≈50 nm). For the highest thermal budget (TB = 8.7 μm, Figure 3.4), the structure of the Ge film is greatly modified. One can observe the disappearance of both the holes and the nanoporous structure. Instead, the SEM plan-view analysis (Figure 3.4) reveals the growth of faceted crystallites, with
  • an average lateral size of 700 nm for the Se-implanted sample and of 1600 nm for the co-implanted sample, and a complex surface structure between these crystallites. Indeed, some parts of the surface exhibit large roughness, while some others appear completely flat (black contrast in Figure 3.4
  • ). This phenomenon can be explained considering that these crystallites result from the Ge dewetting mechanism occurring on the buried SiO2 layer already observed in Figure 3.3. The general dewetting phenomenon is due to surface/interface energy minimization between the film and the substrate, leading to
PDF
Album
Full Research Paper
Published 30 Jan 2015

Manganese oxide phases and morphologies: A study on calcination temperature and atmospheric dependence

  • Matthias Augustin,
  • Daniela Fenske,
  • Ingo Bardenhagen,
  • Anne Westphal,
  • Martin Knipper,
  • Thorsten Plaggenborg,
  • Joanna Kolny-Olesiak and
  • Jürgen Parisi

Beilstein J. Nanotechnol. 2015, 6, 47–59, doi:10.3762/bjnano.6.6

Graphical Abstract
  • , suggest a temperature dependence of the obtained α-Mn2O3 particle size in Ar atmosphere, which was not the case for the Mn3O4 particles. The Scherrer-derived size of the crystallites of the pure phase α-Mn2O3 obtained in an O2 atmosphere at 550 °C is one third larger than that calculated for particles
  • obtained in Ar at the same temperature. Hence, similar to the Mn3O4 phases described above, the presence of O2 in the calcination atmosphere yields larger crystallites of the same product. No pure phase of monoclinic Mn5O8 (ICDD 00-039-1218, C2/m) could be obtained by calcination at temperatures between
  • in Ar atmosphere, we propose that the presence of pores in the α-Mn2O3 particles reported here results from the analog growth, rearrangement and merging processes of the Mn3O4 nanoparticles. The considerably smaller size of the crystallites obtained from the broadening of the XRD reflections of α
PDF
Album
Supp Info
Full Research Paper
Published 06 Jan 2015

Size-dependent density of zirconia nanoparticles

  • Agnieszka Opalinska,
  • Iwona Malka,
  • Wojciech Dzwolak,
  • Tadeusz Chudoba,
  • Adam Presz and
  • Witold Lojkowski

Beilstein J. Nanotechnol. 2015, 6, 27–35, doi:10.3762/bjnano.6.4

Graphical Abstract
  • . Annealing the powders at a temperature lower than 500 °C did not result in an increase in the crystallite size, where the crystallites remained approximately 11 nm in diameter. As the annealing temperature of the nano-ZrO2 was increased, the average crystallite and grain size of the powder increased. The
  • diameter to increase to 72 nm (according to the Scherrer equation). The much larger apparent particle size indicated by the specific surface area measurements is the result of particle sintering. That is, the width of the XRD peaks depends on the size of the crystallites, while the specific surface area
PDF
Album
Full Research Paper
Published 05 Jan 2015

Silicon and germanium nanocrystals: properties and characterization

  • Ivana Capan,
  • Alexandra Carvalho and
  • José Coutinho

Beilstein J. Nanotechnol. 2014, 5, 1787–1794, doi:10.3762/bjnano.5.189

Graphical Abstract
  • Ossicini [52] showed that while radiative recombination of H-saturated Si NC is strongly dependent on the size of the crystallites, in hydroxy-terminated or SiO2-embedded NCs the optical yield is mostly determined by the fraction of oxygen termination. First-principles modeling has also been insightful in
PDF
Album
Review
Published 16 Oct 2014
Other Beilstein-Institut Open Science Activities